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Contributions to membrane-embedded-protein diffusion beyond hydrodynamic theories
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The diffusion coefficients of proteins embedded in a lipid membrane are traditionally described by the
hydrodynamic Saffman-Delbrück theory, which predicts a weak dependence of the diffusion coefficient on
protein radius, D ∼ ln R. Recent experiments have observed a stronger dependence, D ∼ 1/R. This has led to
speculation that the primary sources of drag on the protein are not hydrodynamic, but originate in coupling to other
fields, such as lipid chain stretching or tilt. We discuss a generic model of a protein coupled to a nonconserved
scalar order parameter (e.g., chain stretching), and show that earlier results may not be as universal as previously
believed. In particular, we note that the drag depends on the way the protein-order parameter coupling is imposed.
In this model, D ∼ 1/R can be obtained if the protein is much larger than the order parameter correlation length.
However, if we modify the model to include advection of the order parameter, which is a more appropriate
assumption for a fluid membrane, we find that the entrainment of the order parameter by the protein’s motion
significantly changes the scaling of the diffusion coefficient. For parameters appropriate to protein diffusion,
the Saffman-Delbrück-like scaling is restored, but with an effective radius for the protein that depends on the
order parameter’s correlation length. This qualitative difference suggests that hydrodynamic effects cannot be
neglected in the computation of drag on a protein interacting with the membrane.
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I. INTRODUCTION

Lipid bilayer membranes are a fundamental component of
biological cells, and play a role in many essential biological
processes, including compartmentalization of the cell and
organelles, as well as cell signaling, in which the membrane
is the environment for the relevant membrane proteins [1].
Interactions between the membrane and embedded proteins
may alter the functioning of the proteins [2] as well as
potentially leading to protein aggregation [3]. The diffusion
coefficient of proteins in the membrane has traditionally been
described by the Saffman-Delbrück law [4–6], which predicts
that the diffusion coefficient of a protein should depend
only logarithmically on the protein radius, D ∼ ln(R). This
prediction has be used to determine the size of membrane-
embedded objects and protein aggregates [7,8]. However, re-
cent experiments have measured protein diffusion coefficients
that have a stronger dependence on protein radius, D ∼ 1/R

[9–11], though this is not universally accepted [12,13]. Naji,
Levine, and Pincus (NLP) suggested that this dependence
could arise from dissipative protein-lipid interactions, such as
a coupling to local lipid conformation (e.g., chain stretching
or tilt) [14] (Fig.1). Démery and Dean (DD) have described an
interesting class of these “coupling models,” and shown that
the case of a linear coupling to a field with simple relaxational
dynamics can be solved exactly [15,16]. The dynamics of
proteins with hydrophobic mismatch (i.e., a coupling to
membrane thickness) has also been treated by coarse-grained
molecular dynamics simulations [13,17], and the dynamics
of proteins with a preferred spontaneous curvature calculated
with continuum approaches [18,19].

We extend the approach of Démery and Dean [15,16], treat-
ing a model of a protein coupled to a nonconserved “Model A”
order parameter φ(r,t) [20,21]. We apply this coupling as a
boundary condition, and show that this model can be solved
exactly to determine the additional drag from the protein-lipid

interaction. We then discuss some distinctions between this
model and the model originally suggested by DD, which has
identical Model A dynamics for the field, but a linear protein-
field coupling. We suggest that coupling the external field to
the protein via a boundary condition may be more appropriate
for describing the protein-lipid interaction. We then extend
the model to describe the coupling with a nonconserved
order parameter that is hydrodynamically advected (“Advected
Model A”); the order parameter is then entrained by the protein,
which significantly alters the magnitude and scaling properties
of the diffusion coefficient. This set of assumptions is more
appropriate for a fluid membrane, as it allows the membrane
to flow in response to protein motion.

Our goal in all portions of this paper will be to determine the
drag force on a protein moving with a fixed velocity through
an order parameter field φ(r,t). In Sec. II of the paper, we will
follow [15,16] and assume that the order parameter field is not
advected by the lipid flow around the protein, and that the lipid
flow is not altered by the inhomogeneity of the order parameter.
In that case, we find the drag force due solely to the order-
parameter interaction, Fint

drag = −ζI Vp, where Vp is the particle
velocity. The total drag will then be ζtot = ζI + ζhydro, where
by assumption the hydrodynamic drag ζhydro is just the usual
Saffman-Delbrück drag [4], and the diffusion coefficient D =
kBT /ζtot by the Stokes-Einstein relation [21,22]. In Sec. III,
we explicitly include the advection of the order parameter by
the lipid flow around the protein, and determine the total drag
by integrating the stress tensor around the protein.

We do not give the order parameter φ(r,t) a direct physical
interpretation, but note that the Model A dynamics are the
simplest possible phenomenological model of a nonconserved
scalar lipid feature, such as lipid conformation [2,23–25]. The
combination of the advection-diffusion and hydrodynamic
equations we present here are a very simplified version of
those used to model liquid crystals [26–28]. Extensions of
this research to coupling to more complex lipid characteristics
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FIG. 1. (Color online) (a) Schematic illustration of a protein-
induced distortion in a lipid membrane from top of membrane.
Lipids within a distance of roughly ξ of the protein may have altered
properties, such as chain conformation. (b) One particular example
of distortion, in which hydrophobic mismatch leads to a change in
membrane thickness.

(e.g., tilt and thickness [29]) may be possible, though the
dynamics of these fields are still not completely understood
[30–32].

II. MODEL A DYNAMICS

Démery and Dean [15,16] have suggested applying a simple
dissipative model to describe the dynamics of a nonconserved
order parameter in a membrane. This model, which we refer
to as Model A dynamics (in the classification of Hohenberg
and Halperin [20]), describes the relaxation of the order
parameter to its equilibrium value with a phenomenological
relaxation time τ . Although scalar order parameters with
similar energetics have previously been used to describe chain
order in membranes (see, e.g., [24,25,33]), we do not give a
specific physical interpretation for the field φ, as we do not have
a good reason to believe that Model A is a realistic physical
model for the relaxation of any of these order parameters.
The primary reason for working with Model A is that it is
the simplest possible dynamical model for a nonconserved
order parameter. Similar models have also been proposed
phenomenologically for the relaxation of the nematic order
parameter [34,35], though to reach the simple one-relaxation-
time approximation of Eq. (2) requires neglecting fluid flow.

We discuss this model to show in a simple context that
the drag on the protein depends on the way the coupling
between the protein and the order parameter is treated, i.e.,
as a boundary condition, as in most of this paper, or a linear
interaction, as in Refs. [15,16]. This section also serves as

an introduction to the more complicated and realistic model
of Sec. III, where we will show explicitly that hydrodynamic
effects cannot be neglected.

Model A describes a scalar field φ(r,t) with a Hamiltonian,

H = E
∫

d2r

[
1

2
φ2(r) + ξ 2

2
|∇φ|2

]
, (1)

where E is an energy density and ξ the correlation length of
the field. The dynamics of this field are then given by

∂tφ(r,t) = −�
δH

δφ(r,t)
+ ν(r,t) (2)

= −�E(φ − ξ 2∇2φ) + ν(r,t), (3)

where � is a phenomenological transport coefficient, with
1/�E ≡ τ the relaxation time of the system. ν(r,t) is a
Gaussian Langevin force with variance 〈ν(r,t)ν(r′,t ′)〉 =
2kBT �δ(r − r′)δ(t − t ′), as required by the fluctuation-
dissipation theorem [21]. For the remainder of the paper, we
will neglect the fluctuations; this point will be discussed in
Sec. IV.

A. Model A with boundary condition

We determine the drag on a protein moving with a fixed
velocity Vp. The protein influences the order parameter around
it, which we represent by fixing the field φ to the value φb on
the protein surface. Near the protein, φ will then take on a
value different from equilibrium value of φ = 0 (Fig. 2).

If we change frames to the reference frame of the particle,
the equation of motion Eq. (2) becomes (at steady state, and
neglecting fluctuations)

−Vp · ∇φ = − 1

τ
(φ − ξ 2∇2φ), (4)

where τ = 1/�E is the field’s relaxation time. We emphasize
here that Vp is simply the protein’s velocity, and in this model
we have not explicitly considered the advection of the order
parameter; this assumption will be examined in Sec. III. We
determine the field φ(r,t) perturbatively in the protein velocity
Vp [36]. We take Vp = V0x̂ without loss of generality, and
expand φ(r,t) ≈ φ(0)(r) + V0φ(1)(r,t). To zeroth order in V0,
φ must be time independent and radially symmetric. The
boundary condition on φ is that φ(r = R) = φb, where R is

V
p
 = 0 V

p
≠ 0

FIG. 2. (Color online) Illustration of the φ(r,t) profile. For
the static protein (left), φ(r,t) = φ(0)(r) is given by Eq. (5). For
a protein moving at constant rightward velocity (right), φ(r,t) =
φ(0)(r) + V0φ(1)(r,θ ). The contours shown are logarithmically spaced,
i.e., φ = φb at the thick contour (r = R), and φ = 0.1φb at the next
contour out.
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the protein radius (see Fig. 2), and φ(r) → 0 as r → ∞. With
these boundary conditions, we solve Eq. (4) to zeroth order in
V0 to find

φ(0)(r) = φb

K0(r/ξ )

K0(R/ξ )
, (5)

where Kn(x) is the nth-order modified Bessel function of the
second kind. We note that φ(r,t) is only defined for r � R.

To determine the drag force, we have to integrate the stress
tensor for the field around the inclusion. The stress tensor �ij

for the φ field can be derived by looking at small deformations
of the system, and determining the change in the energy H

[37,38]. The result is [37–39]

�ij (r)/E = δij

[
1

2
φ2 + ξ 2

2
|∇φ|2

]
− ξ 2(∇iφ)(∇jφ), (6)

i.e., ∇ · � = δH
δφ

∇φ. The total force, which is in the x̂ direction

by symmetry, is Fint
drag = ∮

d�� · n̂ = F x̂,

F = R

∫ 2π

0
dθ �xj (r = R,θ )n̂j , (7)

where n̂j is the outward-pointing normal to the circle and
the Einstein summation convention is assumed. In principle,
we would need to determine φ(r) to first order in V0 to
determine F , as the force is O(V0); we do this calculation
in Appendix A. However, we can avoid explicitly calculating
φ(1) by using the steady-state equation, Eq. (4), letting us
set ∇ · � = δH

δφ
∇φ = �−1

(
Vp · ∇φ

) ∇φ. Thus, to first order,
∇ · � will only depend on φ(0). By applying the divergence
theorem to Eq. (7),

Fint
drag = −

∫
r�R

d2r ∇ · � (8)

≈ − 1

�

∫
r�R

d2r Vp · ∇φ(0)∇φ(0), (9)

where the second line is correct to first order in V0. We
could equivalently have determined this equation by con-
sidering the power dissipated (as in Ref. [18]), P = dH

dt
=∫

d2r δH
δφ(r)

dφ(r)
dt

= − 1
�

∫
d2r(Vp · ∇φ)2 = Fint

drag · Vp.
Equation (9) can be integrated straightforwardly, and we

find Fint
drag = −ζI Vp, with

ζI = ζcβ

[
βK0(β)2 + 2K0(β)K1(β) − βK1(β)2

2K0(β)2

]
, (10)

where β = R/ξ is the ratio of the protein radius to the interface
width, which is the relevant unitless measure of the protein
size; ζc = πφ2

b/� is the characteristic scale of the drag. The
interaction drag ζI has the asymptotic behavior

ζI /ζc ∼
{

− 1/2+γE+ln(β/2)
[γE+ln(β/2)]2 , β � 1,

β/2, β � 1,
(11)

where γE ≈ 0.5772 . . . is the Euler-Mascheroni constant.
These asymptotic results and the exact result are plotted in
Fig. 3.

We see that we recover the ζI ∼ R scaling in the limit
R � ξ , as predicted by NLP’s scaling arguments. We also
observe that ζI has a weak (logarithmic) dependence on R for
R � ξ .
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FIG. 3. (Color online) Drag from interaction with the external
field [Eq. (10)] in the boundary condition model scales linearly
with protein size for proteins with a radius much larger than the
field’s correlation length (R � ξ ). However, in the limit R � ξ ,
ζI ∼ 1/ ln(R) [Eq. (11)].

While the large R dependence of ζI on R is clearly
predicted by the scaling arguments of NLP, the dependence
on ξ (ζI ∼ 1/ξ ) is less obvious. However, it is a consequence
of dimensional analysis along with NLP’s prediction ζI ∼ R.
The only independent parameters in our model are R, ξ , �, τ ,
and φb; constructing a variable with the units of drag shows
us that ζI = �−1f (R/ξ,φb), as we see in Eq. (10). Thus, as
ζI can only depend on R and ξ through β = R/ξ , ζI ∼ R

implies ζI ∼ 1/ξ . In other words, as the interface width ξ is
decreased, the drag ζI increases. This singular behavior is a
remnant of the unphysical assumption that the lipids’ velocity
is uncorrelated with the protein velocity; in a fluid membrane,
the increasing stress near the protein will lead to lipid flow, as
we will see in Sec. III, which will change this behavior.

When will the order parameter-induced drag be the primary
source of drag? Our initial assumption in this section is that the
presence of order parameter inhomogeneities does not affect
the lipid flow around the protein, or the hydrodynamic drag;
this assumption is obviously suspect, and we will address it in
Sec. III. However, with this assumption, the total drag on the
protein is ζtot = ζI + ζhydro, with ζhydro given by the Saffman-
Delbrück drag [4,5,40], if the protein is in a free membrane, or
by the Evans-Sackmann [41] or Stone-Ajdari [42] theories for
proteins in supported membranes. For proteins, ζhydro ∼ ηm,
where ηm is the membrane’s surface viscosity [4]. If ζI is
given by Eq. (10), then for a fixed radius R, the interaction
drag will be much larger than the hydrodynamic drag if χ � 1,
where χ ≡ φ2

b/ηm�. In Sec. III, we will see that χ is still a
relevant parameter when advection is included, and that the
order parameter drag can be neglected if χ � 1; however,
χ � 1 is not sufficient to make hydrodynamics irrelevant.

B. Model A with linear interaction: Comparison with Démery
and Dean result

Démery and Dean also study Model A dynamics (as well
as other dissipative models), but couple the protein to the field
with a linear interaction, rather than a boundary condition. We
show that their model as formulated in Refs. [15,16] results
in a different drag than the boundary-condition model, but
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that their result is sensitive to the method used to choose the
strength of the linear protein-field interaction. If we make a
different prescription for this interaction, the DD results match
with our approach in Sec. II A.

The DD model considers a membrane inclusion with
position Rp(t) = Vpt interacting with a classical field φ(r,t)
with a Gaussian Hamiltonian H = H0 + Hint(t),

H0 = 1

2

∫
ddr φ(r)�φ(r), (12)

Hint(t) = h

∫
ddr φ(r)K(r − Rp(t)), (13)

where � is a positive self-adjoint operator and K(r) is an
“envelope” function localized near r = 0 and with the char-
acteristic size R, e.g., K(r) = 1

2πR2 e
−r2/2R2

. For simplicity of
calculation, DD treat K(r) as applying a cutoff in momentum
space, Kk = θ (π/R − k) for the Model A coupling, where θ

is the Heaviside function. The Fourier transform conventions
used here are fk = ∫

d2r e−ik·rf (r) and f (r) = ∫
d2k

(2π)2 e
ik·rfk.

The class of dissipative models studied by DD is

∂tφ = −�
δH

δφ(r)
+ ν(r,t), (14)

where � is a positive self-adjoint operator and ν is a Langevin
force obeying the fluctuation-dissipation relation.

In two dimensions, Démery and Dean find Fint
drag = − ∂Hint

∂Rp
=

−ζ DD
I Vp, with

ζ DD
I = h2

∫
d2k

(2π )2

k2
x |Kk|2
�2

k�k
, (15)

where, for Model A, �k = E(1 + k2ξ 2) and �k = � [see
Eqs. (1) and (2)].

DD set h by requiring that the static insertion en-
ergy, Eins = − h2

4π

∫ ∞
0 dk k|Kk|2/�k, scale as a line energy,

Eins = −2πγIR. With the choice Kk = θ (π/R − k), we find
that h2 = 16π2γIERξ 2/ ln(1 + πξ 2/R2). Evaluating ζI from
Eq. (15), we find

ζ DD
I = ζ DD

c β

[
1 − π2

(π2 + β2) ln
(
1 + π2/β2

)]
, (16)

where β = R/ξ and ζ DD
c = 2πγI

�ξE is the characteristic scale of
the drag in the DD model. For small and large proteins, this
result takes on the asymptotic forms,

ζ DD
I

/
ζ DD
c ∼

⎧⎨
⎩

β
1+2 lnβ/π

2 lnβ/π
, β � 1,

π2

2
1
β
, β � 1.

(17)

The DD model predicts that the drag coefficient will
increase with protein radius R only if R � ξ , where ξ is
the correlation length. (See Fig. 4.) DD do not consider the
limit of R � ξ explicitly, but if we assume that the form
Kk = θ (π/R − k) is still appropriate, the DD model predicts
that the drag coefficient will actually decrease as 1/R. This
should be contrasted with the behavior determined from the
boundary-condition coupling [Eq. (11)], which crosses over
from logarithmic behavior for R � ξ to ζI ∼ R as R � ξ .
We argue that our model is more consistent with the scaling
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FIG. 4. (Color online) DD model [16], Eq. (16), predicts a drag
coefficient ζ DD

I that scales linearly in protein size for R � ξ , but if we
extend it naively into the limit R � ξ , ζ DD

I decreases with increasing
protein size [Eq. (17)] .

analysis of Ref. [14], which requires R � ξ as a necessary
condition to guarantee that ζI ∼ R.

The inconsistency between the results of DD and the results
of Sec. II A and the scaling analysis of NLP [14] results from
the different handling of the protein-field interaction (boundary
condition for Sec. II A or linear coupling for DD). However,
by exploiting the freedom to choose the envelope function
K(r) and the interaction scale h, we can make the DD model
consistent with the boundary-condition model.

We first note that Eq. (15) can be rewritten as

ζ DD
I =

∫
d2k

(2π )2

k2
x

�k

∣∣φDD
(0) (k)

∣∣2
(18)

= 1

�

∫
d2r

∣∣x̂ · ∇φDD
(0) (r)

∣∣2
(Model A), (19)

where φDD
(0) is the static profile for the DD model, φDD

(0) (k) =
−hKk/�k. φDD

(0) is the steady-state solution to Eq. (14), i.e.,
it minimizes H0 + Hint. Equation (19) holds only for the
specific case of Model A, when �k = �. By comparison to
Eq. (9), the DD approach and the boundary-condition model
will give identical results if φDD

(0) (r) = φ(0)(r), where φ(0) is
the equilibrium field from the boundary condition model
[Eq. (5)]. This means that if the envelope function K(r)
is chosen so that the distortion around the protein matches
that of the boundary-condition model of Sec. II A, the drag
will be identical to that of the boundary-condition model
[Eq. (10)]. We can also ensure that ζI = ζ DD

I without changing
the envelope function by changing the prescription for h, e.g.,
by choosing h such that∫

R2
d2r

∣∣x̂ · ∇φDD
(0) (r)

∣∣2 =
∫

r�R

d2r
∣∣x̂ · ∇φ(0)(r)

∣∣2
. (20)

One could certainly be skeptical about the process of as-
signing h to be a complicated function of R; after all, as is clear
from Eq. (15), the choice of h can completely determine ζ DD

I .
We note that it is also possible to get scaling consistent with
Sec. II A (ζI ∼ 1/ ln β for β � 1) by weaker assumptions. One
possible way is using the cutoff function Kk = θ (π/R − k),

061921-4



CONTRIBUTIONS TO MEMBRANE-EMBEDDED-PROTEIN . . . PHYSICAL REVIEW E 85, 061921 (2012)

and then choosing h to ensure that the boundary condition
φDD

(0) (r = R) = −h
2πEξ 2

∫ π/β

0 du J0(uβ) u
1+u2 = φb holds. In this

case,

ζ DD
I

/
ζc = 1

2

ln
[
1 + π2

β2

] − π2

π2+β2( ∫ π/β

0 du J0(uβ) u
1+u2

)2 , (21)

where, as in Sec. II A, ζc = πφ2
b/�. Numerically evaluating

Eq. (21) shows that ζ DD
I /ζc ≈ −1.0097/ ln(β) for β � 1 (with

maximum relative error 3 × 10−3 for β from 10−12 to 10−6),
consistent with the scaling of Eq. (10) for β � 1.

We also argue that the procedure for determining h used in
Ref. [16] may not be appropriate for other reasons. We note
that the suggested requirement Eins ∼ R is not reasonable for
all values of R/ξ . Throughout [16], DD assume that R � ξ

(the deformation is much larger than the protein); if this
is the case, the deformed area surrounding the protein will
be roughly πξ 2 − πR2 ≈ πξ 2, and we would expect only
a weak dependence of the insertion energy on the protein
size. More explicitly, within the boundary condition model
of Sec. II A, the insertion energy will be given by Eins ≡
H [φ(0)] = πEφ2

bξ
2βK1(β)/K0(β), with β = R/ξ . For R � ξ

we find that Eins ≈ −πEξ 2φ2
b [γE + ln(β/2)]−1, showing a

weak dependence on R, as suggested by our rough estimate.

III. EFFECTS OF HYDRODYNAMIC ADVECTION
OF ORDER PARAMETER (ADVECTED MODEL A)

Both our model of Sec. II A and that of DD assume that
the order parameter φ is not advected by fluid flow, i.e., that
lipids are at rest, even near the translating protein (Fig. 5). This
assumption is apparent in Eq. (4). In addition, the models of
Sec. II do not allow the material to flow in response to the
applied stress �; they describe a solid. These assumptions are
not generally appropriate for lipid membranes in their fluid
phase, which are well described by hydrodynamic theories
[4,43]. In particular, molecular dynamics simulations show
that lipids near a diffusing protein are entrained by the protein,
and have velocities correlated to the protein motion [44]. If
some lipids within ξ of the protein move in concert with the

"Solid" Fluid

FIG. 5. (Color online) Lipid velocities plotted in the frame
moving with the protein. The dark central circle is the protein, and
the lighter circle the region with φ(r) significantly different from 0.
The models of Sec. II make the assumption that the lipids are at rest
relative to the protein, i.e., that they have velocity −Vp in the protein’s
rest frame; this is illustrated in the left panel. In a fluid membrane,
the lipid velocity will be entrained by the protein motion (right). The
distortion of the profile φ(r) will be significantly reduced in this case,
compared to that of Sec. II.

protein, the distortion of φ(r,t) due to protein motion and
therefore the drag ζI will be significantly reduced (Fig. 5,
right). The hydrodynamic flow caused by the stress � will
also lead to an alteration of the drag on the protein due to
hydrodynamic dissipation.

If φ is advected by a velocity field in the membrane vm, we
describe the dynamics of the field φ in the protein’s reference
frame as (in steady state)

(vm − Vp) · ∇φ(r) = −� δH
δφ

(22)

= − 1

τ
(φ − ξ 2∇2φ), (23)

where now vm is the membrane velocity measured in the
laboratory frame, i.e., vm = Vp at r = R, and vm → 0 as r →
∞. We will work in polar coordinates vm(r,θ ) = vr

mr̂ + vθ
mθ̂ .

This advection-diffusion model, which we call Advected
Model A, is the simplest possible model to represent the
dynamics of a nonconserved order parameter in a fluid lipid
bilayer membrane.

The total drag force on the protein is (see, e.g., [27,45] for
similar calculations)

Fdrag =
∮

d�(σ + �) · n̂, (24)

where the integral is around the boundary of the protein, n̂
is the outward-pointing normal, � is the composition stress
tensor [Eq. (6)], and σ is the hydrodynamic stress tensor,

σij = −Pδij + ηm

(
∂vi

m

∂rj

+ ∂v
j
m

∂ri

)
, (25)

where P is the membrane surface pressure and ηm the
membrane surface viscosity. In Sec. II, we only calculated
one piece of Fdrag, Fint

drag = ∮
d�� · n̂ [Eq. (7)]. Our approach

in this section will be to calculate Fdrag from Eq. (24), and then
determine ζtot, i.e.,

Ftotal
drag = −ζtotVp. (26)

We have, in Eq. (26), included the possibility of there being
additional sources of drag beyond that in Eq. (24), i.e., Ftotal

drag =
Fdrag + Fadditional with Fdrag from Eq. (24). The “intrinsic drag”
that Evans and Sackmann include [41] is of this form, and we
will treat this term below; we also will include an appropriate
intrinsic drag of this sort in our calculations of ζtot.

To determine vm and P , we have to solve the Stokes
equations appropriate for a membrane taking into account
the body force ∇ · � = δH

δφ
∇φ exerted by the field on the

fluid. Within the Saffman-Delbrück picture of a membrane as a
two-dimensional fluid surrounded by a bulk three-dimensional
fluid, the membrane Stokes equations are [4,5,43,46–48]

ηm∇2vm − ∇P + K ∗ vm + ∇ · � = 0, (27)

∇ · vm = 0, (28)

where (K ∗ vm)(r) = ∫
d2r ′K(r − r′)vm(r′) is the traction

from the outside fluid and the boundary conditions are
vm = Vp on r = R and vm → 0 as r → ∞. In a free-
floating membrane surrounded on both sides by a fluid with
viscosity ηf , the Fourier transform of the convolution term is
given by {K ∗ vm}q = −2ηf qvm(q), i.e.,K(q) = −2ηf q. This
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FIG. 6. (Color online) Illustration of protein of radius R diffusing
in membrane a height H above a substrate, surrounded by fluid with
viscosity ηf . We have also indicated the distorted region near the
membrane, with characteristic size ξ .

nonlocal term makes solving the mobility problem difficult
[5]. We will treat the similar case of a membrane above a
solid substrate (Fig. 6), which in some limits reduces to a
significantly simpler problem. The kernel K(q) then takes the
form [46,49]

K(q) = −ηf q coth (qH ) − ηf q. (29)

For wavelengths long compared to H (q � 1/H ), this reduces
to the form K(q) = −ηf /H , i.e., a linear drag, K ∗ vm =
− ηf

H
vm [41,42]. In fact, this approximation may be appropriate

as long as H is small compared to the Saffman-Delbrück
length scale Lsd = ηm/2ηf [42]. This “Brinkman equation”
model can also be derived from treating the thin layer of
fluid between the membrane and the solid substrate in the
lubrication approximation [42]. Though strictly speaking this
approximation describes a supported membrane, we expect
the hydrodynamics to be in qualitative agreement with that of
a free membrane for objects of size R � LH , where L2

H ≡
2LsdH ; see [50,51] and references therein. For example, we
note that the hydrodynamic drag in this theory will have the
same functional form as the Saffman-Delbrück law [4] in the
limit of R � LH , but with LH instead of Lsd the relevant
length scale.

In the absence of coupling between the protein and the order
parameter (i.e., φb = 0), the bare hydrodynamic drag is [41]

ζEvans-Sackmann = πηmε

[
2ε + 4K1(ε)

K0(ε)

]
, (30)

where ε ≡ R/LH . We emphasize that Eq. (30) includes the
effect of the intrinsic drag with the substrate, which adds
a drag force of Fadditional = −πR2bpVp [41], where bp is
a phenomenological drag coefficient. We have included this
term in Eq. (30), setting bp = ηf /H , which is appropriate
for a membrane separated by a thin layer of fluid from a
substrate. This term accounts for the drag on the bottom of the
protein; see [41,42] for details. We also include this term in
our numerical calculations of ζtot for Advected Model A, so
that ζtot is equal to Eq. (30) when the coupling to the order
parameter vanishes (φb = 0).

In principle, the advection equation [Eq. (22)] and the
membrane Stokes equations [Eqs. (27) and (28)] must be

solved simultaneously in order to determine vm, φ(r), and
P . However, we can again exploit the simplicity of the order
parameter dynamics and use Eq. (22) to calculate the force
fφ = δH

δφ
∇φ = − 1

�
(vm − Vp) · ∇φ∇φ. To linear order in V0,

this force only depends on the static profile φ(0), and we can
eliminate Eq. (22).

If we rescale variables, defining ρ = r/R and u = vm/V0,
we find, to linear order in V0,

∇2u − ∇P ′ − ε2u − χ r̂r̂ · (u − x̂)β2 K2
1 (βρ)

K2
0 (β)

= 0, (31)

∇ · u = 0, (32)

where the derivatives are now with respect to ρ, and P ′ is
the unitless pressure. We now see that the velocity profile
around the protein will depend on three dimensionless groups,
ε, β, and χ , where ε = R/LH and β = R/ξ as above. The
“drag ratio” χ ≡ φ2

b/ηm� is the ratio of the naive scale of
the interaction drag ζI ∼ φ2

b/� to the naive scale of the
hydrodynamic drag, ζhydro ∼ ηm. By this, we mean that the
naive model of Sec. II A (or that of Démery and Dean applied
to Model A) predicts that the scale of the drag induced by the
order-parameter interaction is φ2

b/�, i.e., that the ratio of the
order parameter drag to the hydrodynamic drag will scale as
χ . However, increasing χ will also increase the effect that the
order parameter has on the lipid flow near the protein, i.e., the
last term in Eq. (31) becomes large if χ � 1.

In order for the coupling between the protein and the order
parameter field to alter the drag coefficient significantly, we
must have χ � 1. In this region of parameter space, the flow
field vm will necessarily be modified, and we will have to
solve Eq. (31) numerically. Since the Stokes equations we
use are two-dimensional, it turns out to be convenient to use
the stream function representation for u [52]. We represent
u(ρ,θ ) = ∇ × [

ψ(ρ,θ )ẑ
]
, i.e.,

uρ = 1

ρ

∂

∂θ
ψ(ρ,θ ), (33)

uθ = − ∂

∂ρ
ψ(ρ,θ ), (34)

which automatically satisfies the incompressibility require-
ment. We know by the linearity of the problem and the
symmetry of Vp, ψ = Y (ρ) sin θ . By taking the curl of
Eq. (31), we find

∇4ψ − ε2∇2ψ + χ

(
Y (ρ)

ρ
− 1

)
β2

ρ

K2
1 (βρ)

K2
0 (β)

sin θ = 0,

(35)

or, explicitly working out the derivatives,

Y ′′′′(ρ) + 2
Y ′′′(ρ)

ρ
−

(
3

ρ2
+ ε2

)
Y ′′(ρ)

+
(

3

ρ3
− ε2

ρ

)
Y ′(ρ) −

(
3

ρ4
− ε2

ρ2

)
Y (ρ)

+χ

(
Y (ρ)

ρ
− 1

)
β2

ρ

K2
1 (βρ)

K2
0 (β)

= 0. (36)

This fourth-order ODE has boundary conditions set by the
boundary conditions on vm, which are vr

m = V0 cos θ and vθ
m =
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−V0 sin θ at r = R, and vr
m = 0, vθ

m = 0 as r → ∞; these
transform to Y (1) = Y ′(1) = 1 and Y (∞) = Y ′(∞) = 0. This
boundary value problem is relatively straightforward, though
it does require us to resolve a large range of length scales;
we must resolve the velocity field over the region [1,1 + 1/β]
where φ(0) is significantly different from zero, but the domain
of the whole problem [1,ρmax] may be large, as we must have
ρmax � 1/ε. We use MATLAB’s boundary value solver bvp4c
to determine Y (ρ). We use an initial guess of Y (ρ) = 1/ρ with
a logarithmically spaced initial mesh.

Once Y (ρ) is determined, we need to calculate the total
drag force, Eq. (24). We can do this in two major routes:
(1) directly via Eq. (24), or (2) applying an identity derived
from the reciprocal theorem [52–54]. Each route has separate
advantages: if we use Eq. (24) directly, we do not need to
determine φ(1) explicitly, but if we use the reciprocal theorem
identity, we need to determine φ(1), but do not need to
determine the full membrane stress tensor σ or the membrane
pressure P . We determine the drag with both methods to ensure
consistency (Appendix B). As a check on the accuracy of
the solver and the drag calculation, for χ = 0, we reproduce
the Evans-Sackmann result, Eq. (30), with a maximum relative
error of 5 × 10−5 for ε from 10−5 to 105. These errors are for
the direct method; the reciprocal theorem method uses the
exact result, Eq. (30), and does not provide an independent
check if χ = 0.

A. Implications for protein diffusion coefficients

The experiments of Gambin et al. measure the diffusion of
proteins and protein complexes with radii ranging from 0.5 to
2 nm [9], finding that D ∼ 1/R (i.e., ζ ∼ R) over this range.
Experimentally measured membrane surface viscosities are of
the order of 10−7–10−5 poise cm [40,55–58], corresponding
to Saffman-Delbrück lengths (Lsd = ηm/2ηf ) of roughly
0.1–10 microns, much larger than the protein radius. The
relevant hydrodynamic regime for describing proteins is thus
R � Lsd . Many features of this limit are reproduced by
our Brinkman equation model of Eq. (31). In particular,
the Saffman-Delbrück drag and the Evans-Sackmann drag
have the same scaling when R � Lsd and R � LH ; for
ε = R/LH � 1, the Evans-Sackmann drag has the form
ζEvans-Sackmann ≈ 4πηm [ln(2/ε) − γE]−1, in comparison with
ζsd = 4πηm [ln(2Lsd/R) − γE]−1 for R � Lsd . We wish to
explore the following question: can the interaction with the
order parameter alone change the scaling of ζ to ζ ∼ R in
the region ε � 1? Within our model of Sec. II A and that of
DD, the answer is yes. However, we will find that including
the advection of the lipids will qualitatively change the size of
the effect, showing that (within our model), order parameter
interactions are insufficient to explain the experimental data of
Ref. [9].

In our model of Sec. II A, we found that the order-parameter
interaction led to ζtot ∼ R in the limit of R � ξ (β � 1) and
χ � 1; we will start by examining this region of parameter
space. We can determine some of the characteristic features
of the velocity profile uρ(ρ,θ ) = ρ−1Y (ρ) cos θ simply from
Eq. (31). We see that the order-interaction term acts as an
effective drag on the radial part of u relative to the protein’s
radial velocity, r̂ · x̂ = cos θ . However, as K1(βρ) will decay
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FIG. 7. (Color online) As χ = φ2
b/�ηm is increased, the lipids

near the protein are increasingly correlated to the protein velocity,
and the radial velocity profile uρ is constant over the effective radius
of the protein, which increases weakly with increasing χ . For this
figure, β = 1, ε = 10−2, and ρmax = 100/ε (the entire domain is not
shown in this figure).

quickly for ρ � 1/β, this drag is only effective for a small
region near the protein. If β � 1, we would expect that
the order-interaction drag is negligible beyond a distance
ρ∗, where (ρ∗ − 1) ∼ 1

2β
ln[bχβ2] where b is an arbitrary

constant. In our numerical results, we see that for strong
protein-order parameter coupling, χ � 1, the radial velocity
near the protein is nearly constant for a significant distance
(Fig. 7). This suggests the idea of an “effective radius”—that
the order-induced drag essentially perfectly entrains the lipids
within a characteristic distance of the protein, and the total
drag should be simply ζEvans-Sackmann(εReff/R). Our estimate
from above suggests that (Reff/R − 1) ∼ 1

β
[lnχ + lnbβ2] for

β � 1. We find below that (Reff/R − 1) ∼ 1
β

can also be a
useful fitting form more generally; this is unsurprising, as it
suggests that the effective radius is just the protein radius
plus a distance on the order of the interface width ξ , i.e.,
Reff ≈ R + c ξ . However, we note that this is only a rough
estimate, and in fact will break down for larger β or ε; this
will be addressed further in Sec. III B.

At large χ , the total drag increases roughly linearly with
lnχ (Fig. 8). By comparison, the theory of Sec. II A predicts

10
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10
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10
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81.75
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1.85

1.9
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ζ to
t/η

m

ζ
Evans−Sackmann

Effective radius fit

Numerical results

FIG. 8. (Color online) As χ = φ2
b/�ηm is increased, the total

drag on the protein ζtot [Eq. (26)] increases only slowly, roughly as
lnχ ; this is very different from the theory of Sec. II A, which predicts
that the drag should be linearly proportional to χ [Eq. (10)]. We can
fit these results to an effective radius theory as suggested above, with
Reff/R = 1 + c1 + c2lnχ with c1 = −0.25 and c2 = 0.045. In this
simulation, ε = 10−3, β = 10, and ρmax = 100/ε.
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FIG. 9. (Color online) If we vary the correlation length of φ, ξ ,
while holding the radius R and the hydrodynamic length scale LH

fixed (corresponding to varying β while holding ε fixed), we see
that smaller drag layers lead to smaller total drag ζtot [Eq. (26)] on
the particle. This should be contrasted with the result in the absence
of hydrodynamics, Eq. (10), in which thinner layers lead to larger
gradients and thus larger drags. ε = 10−3 and χ = 106 for the data in
this figure. This is well fit to an effective radius of Reff/R = 1 + c/β

with c = 3.22.

that ζI /ηm ∼ χ [Eq. (10)]; entrainment significantly reduces
the effect of the order parameter coupling. In fact, even
increasing the coupling strength φ2

b by ten orders of magnitude
produces a smaller than 10% change in the total drag. This
weak dependence is consistent with the “local entrainment”
argument given above: if we solve for the effective radius as
defined by ζtot(ε,χ ) = ζEvans-Sackmann[εReff(χ )/R], we find that
it scales as lnχ for χ � 1 (Fig. 8).

What is the effect of changing the size of the protein? For
the model of Sec. II A, we found that the interaction drag ζI

depended on the protein radius R only in the combination
β = R/ξ . This will not be the case for the total drag in our
hydrodynamic model. We can determine the total drag as we
either vary the interface width (Fig. 9), or vary the protein
radius (Fig. 10).

If we vary the correlation length ξ while holding the protein
radius fixed, we find that smaller drag layers will lead to a
smaller total drag on the particle (Fig. 9). This may seem
unsurprising, but should be contrasted with the result in the
absence of hydrodynamics, Eq. (10), where the interaction
drag ζI is proportional to R/ξ , and thus smaller correlation
lengths ξ lead to larger drags.

If we increase the protein radius, holding the interface width
ξ and the hydrodynamic length LH fixed, we see that the
drag increases (Fig. 10), but not nearly as much as would be
predicted by the model of Sec. II A. We find that, as R �
ξ , the effect of the order parameter coupling vanishes, and
the total drag simply reduces to the hydrodynamic Evans-
Sackmann drag, Eq. (30). This behavior, as well as that of
Fig. 9, can be well explained by a description of the protein
locally entraining the nearby lipids, as mentioned earlier. The
total drag coefficients can be simply fit to an “effective radius”
model with Reff = R + cξ , with c a constant.

The effects of the order parameter interaction are most
obvious for large correlation lengths. In Fig. 11, we show
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FIG. 10. (Color online) As the radius of the particle is increased,
the additional drag from the order interaction becomes negligible and
ζtot [Eq. (26)] approaches ζEvans-Sackmann. In this figure, we vary R

while keeping ξ and LH fixed; we thus vary β and set ε = 10−4β,
so that ε � 1 for the entire range of ε studied (β ranges from 0.1 to
100). χ = 106 for this figure. This is well fit to an effective radius of
Reff/R = 1 + c/β with c = 3.73.

streamlines for flow past a protein with and without the order
parameter coupling. In this example, the correlation length ξ

is ten times the protein radius, making the “effective size” of
the protein very large compared to the protein’s physical size.

As we can see from Figs. 8 and 10, in the limit of R � ξ

and R � LH , there is not a significant change in the total drag,
and there is not a qualitative change in the scaling of the drag
with radius R; instead, there is a weak dependence that can be
characterized in terms of an effective radius on the order of the
protein size plus the interface size ξ . This behavior holds even
in the limit of χ � 1. This answers our central question: order
parameter interactions, at least in this model, are not sufficient
to cause the experimentally observed result [9] ζtot ∼ R.

As far as we can tell, even as χ � 1, we do not recover
the model of Sec. II A, which predicts a linear increase in ζI

with χ . This result is perhaps not surprising, as the models of
Sec. II A and DD assume that lipid motion near the protein
is completely uncorrelated to the protein (Fig. 5); this limit is
not reached by increasing χ , which only tends to increase the

ξ

FIG. 11. (Color online) Streamlines for flow around a protein;
streamlines are shown in the protein’s rest frame. For the left panel,
χ = 0, i.e., there is no order-parameter coupling, and the flow reflects
the physical size of the protein (central gray circle). In the right
panel, there is strong order-parameter coupling, χ = 105, with a
thick interface, β = 0.1 (ξ = 10R), and show that flow is modified,
resembling a particle with a much larger effective size. The order
parameter profile φ(0)(ρ) is also shown (gray scale shading). ε = 0.01
for both cases.
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FIG. 12. (Color online) As the radius of the object increases,
the additional drag from the order parameter interaction becomes
negligible and the total drag ζtot [Eq. (26)] approaches the Evans-
Sackmann result as R � ξ,LH . Drag is shown as a function of
R/LH = ε, with LH and ξ held fixed. For this figure, χ = 103. Only
points with β < 103 are shown, for reasons of computation time.

entrainment of lipids near the protein (Fig. 7). The neglect of
advection and hydrodynamics in the models of Sec. II A and
that of Refs. [15,16] are therefore not well justified.

B. Other interesting features of the model with advection

Though our primary interest in this model was to consider
the limit relevant to the experiments on proteins of Gambin
et al. [9], i.e., R � LH or ε � 1, where the analogy to
free membranes is best, our model [Eq. (36)] also describes
dynamics of larger objects in a supported membrane, ε > 1.
In this limit, the simple effective size picture is not as useful
in determining the drag on a membrane-embedded object. We
plot the total drag on the protein as a function of R/LH for
various values of ξ/LH and χ in Figs. 12 and 13. We see that,
for R sufficiently large, the Evans-Sackmann result applies, as
for the case of ε � 1 above.

A striking exception to the effective radius idea also
occurs for objects larger than the hydrodynamic correlation
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FIG. 13. (Color online) Increasing χ increases the total drag ζtot

on the protein, but does not change the qualitative features from that
shown in Fig. 12. For this figure, χ = 105. Only points with β < 103

are shown, for reasons of computation time.
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FIG. 14. (Color online) Total drag on the protein ζtot [Eq. (26)]
can be nonmonotonic in ξ , the size of the distortion of the φ field.
The velocity field of the points marked A, B, and C are shown
in Fig. 15. For this simulation, ε = 10 and χ = 105, and we set
ρmax = max(100,100/β), where β = R/ξ ; this result is insensitive
to increases in ρmax and refinements of the mesh.

length LH ; we find that, in this limit, the total drag depends
nonmonotonically on the interface width ξ , with an initial
increase in drag followed by a decrease (Fig. 14). This runs
counter to the intuition from above, where larger values of
ξ lead to the lipids near the protein becoming increasingly
entrained, and hence larger drags. However, in the limit
of ε � 1, increasing ξ does not necessarily increase the
local entrainment of lipids. In fact, the range of entrainment
decreases at large ξ . We show this explicitly in Fig. 15, where
we plot the lipid velocity field near the protein as well as
the distortion φ(0)(r). Though this is initially unintuitive, an
effect of this sort should not be altogether surprising. The drag
force on the lipids due to the composition interaction takes the
form of a force density proportional to the gradient of φ(0)(r),
fφ = −�−1(vm − Vp) · ∇φ(0)∇φ(0). As ξ increases, the order
parameter field φ(0)(r) becomes increasingly uniform, and the
order-parameter drag is less effective at entraining local lipids
(Fig. 15). However, this limit does not appear to have any
immediate physical relevance, since it refers to distortions that
are orders of magnitude larger than the protein they surround.

IV. DISCUSSION

We have presented a model that describes the drag on a pro-
tein due to its coupling to a nonconserved order parameter. Our
model, though it uses the same underlying Model A dynamics
as that of Démery and Dean [15,16], couples the protein to
the order parameter by imposing a boundary condition, and
calculates the force via the stress tensor. This model shows
that the interaction drag ζI scales linearly in the protein radius
R if R is much larger than the order parameter correlation
length, but has a much weaker, logarithmic, dependence on
R for R � ξ . We attribute the difference between our result
and that of Démery and Dean to the different handling of the
protein-order parameter interaction, and show that by altering
their method of assigning the linear coupling parameter h we
can make the two methods consistent.
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(a) R/ξ = 10 (b) R/ξ = 0.005 (c) R/ξ = 10−6

FIG. 15. (Color online) Lipid flow fields near the protein are superimposed over the distortion in the order parameter, φ(0)(r), which is
shown as a color map, ranging from light (φ = φb) to dark (φ = 0). Velocities are plotted relative to the protein’s velocity. In the leftmost image
(a), the distortion is small, and does not strongly affect the velocities. In the center image (b), the distortion is large, extending far beyond the
region shown, but still shows noticeable gradients near the protein. In this limit, lipids are significantly correlated to the protein over a larger
range than shown in (a). In (c), the distortion is yet larger, and the gradient near the protein has decreased; lipids near the protein are not as
entrained as in (b). The velocities have the same scale for (a), (b), and (c).

We also note that Démery and Dean have also calculated
the drag force at large particle velocities Vp, which we have
not done. However, we suspect that our model of Sec. II A will
also differ from the linear coupling model of Démery and Dean
in terms of the nonlinear response. In Ref. [16], the distortion
in φ caused by the object-field interaction vanishes as 1/Vp
at large velocities, but because of the boundary condition we
have chosen, there will always be a nonvanishing distortion in
φ, though it may occur in a boundary layer near the protein,
as in calculations of the nonlinear microrheological drag in
colloidal model systems [53,59].

Extending the model past dissipative dynamics to include
advection of the order parameter (Sec. III), we discover that
the hydrodynamics of Advected Model A significantly change
the total drag on the protein, and hydrodynamics cannot be
neglected in a consistent way. We find that once the fluid
nature of the membrane is included, the protein-lipid complex
acts like a protein with a larger effective radius, i.e., the lipids
near the protein are almost completely entrained, at least for
the most physically relevant parameters. This effective radius
depends linearly on the order parameter correlation length
ξ , but only weakly on the strength of the order parameter
coupling. If the advection is included, the coupling to the order
parameter does not change the drag scaling from logarithmic
to linear in radius; there are quantitative, but not qualitative,
deviations from the Evans-Sackmann result. Within Advected
Model A, coupling to an order parameter as proposed by
Refs. [14,15] is not sufficient to explain the experimentally
observed diffusion coefficient scaling D = kBT /ζtot ∼ 1/R

[9]. However, this may be a limitation of the very simple model
we have used; simulations of microrheology experiments in
three-dimensional cholesteric liquid crystals have observed
significant deviations from the Stokes drag, including a
different dependence on particle size [60].

The work we have presented here is only an initial step
toward more detailed understanding of the dynamics of

protein-lipid coupling. However, because of the significant
difference between the simplest possible Model A approach
and a more detailed calculation that includes the in-plane
membrane hydrodynamics, we argue that future calculations
should, as we have done in Sec. III, address the hydrodynamic
advection of the order parameter, as well as the effects of the
inhomogeneity of the order parameter on lipid flows within the
membrane. In particular, the dynamics of membrane tilt (see
[29] and references within) may be able to be described using
continuum theories for liquid crystal dynamics [26,61]; to our
knowledge, this approach has not yet been attempted, though
relevant work has been done on the simulation of liquid-crystal
elastomers with free boundaries [62]. An additional feature
absent from our advective model is the potential dependence
of membrane viscosity on the order parameter; if ηm(φ)
is not constant, the drag coefficient of the protein may be
modified [63].

Throughout this paper, we have neglected explicit fluc-
tuations in the order parameter; this is effectively a zero-
temperature assumption, i.e., that 〈φ2〉 ≈ 〈φ〉2. We note that,
for nonlinear couplings, there may be an additional “Casimir
drag” caused by the suppression of thermal fluctuations [64];
this mechanism may also be relevant to the boundary condition
coupling we use, as the stress tensor is nonlinear in φ. This
effect will not appear in linear coupling models [15,16]. The
effects of this Casimir drag are also an interesting area of future
study.

Coarse-grained molecular dynamics simulations [13,17,44,
65–68] may also be able to address the problem we have
described here. However, we note that these models may not be
quantitatively accurate in describing in-plane flow; membrane
surface viscosities measured in coarse-grained models [69] can
be one to two orders of magnitude below their experimental
values [40,55–58].

To summarize, we have three central points. First, even with
the same underlying dynamics, we get a different drag than
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that of Démery and Dean [15] if we handle the protein-field
interaction in a different way. Second, we show that the effects
of advection cannot be neglected in a straightforward way;
there is a qualitative difference between models that allow
lipids to flow in response to order inhomogeneities and those
that do not. Finally, within the simple model we develop, the
protein-membrane interaction alone cannot explain the experi-
mentally observed scaling of protein diffusion coefficient with
radius; for parameters that describe a protein, the effect of
the order parameter interaction is only to give the protein an
effective size set by the size of the membrane distortion.
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APPENDIX A: EXPLICIT CALCULATION OF LINEAR
DISTORTION IN φ

We explicitly calculate the order parameter profile φ(r,t)
to first order in the velocity V0 for the model of Sec. II A. The
equation of motion is (in steady state)

−Vp · ∇φ = − 1

τ
(φ − ξ 2∇2φ). (A1)

We wish to solve to linear order, φ(r) = φ(0) + V0φ(1). We
showed in the main body of the paper that φ(0)(r) = φb

K0(r/ξ )
K0(R/ξ ) .

We then find that φ(1) satisfies the equation

−x̂ · ∇φ(0) = − 1

τ
(φ(1) − ξ 2∇2φ(1)). (A2)

The solution to this equation will have the form φ(1)(r,t) =
f (r) cos(θ ), with boundary conditions f (r = R) = 0, f (r) →
0 as r → ∞. f (r) then satisfies a modified inhomogeneous
Bessel equation,

ξ 2

[
f ′′ + 1

r
f ′ − 1

r2
f

]
− f = τ

ξ
φb

K1(r/ξ )

K0(R/ξ )
. (A3)

This equation is solved by

f (r) = φbτ

2ξ 2

[
RK1(r/ξ )

K1(R/ξ )
− rK0(r/ξ )

K0(R/ξ )

]
. (A4)

The total drag force, which is in the x̂ direction by
symmetry, is [with � from Eq. (6)]

F = R

∫ 2π

0
dθ �xj (r = R,θ )n̂j , (A5)

where n̂j is the outward-pointing normal to the circle. Perform-
ing this calculation to first order in V0, we find F = −ζI Vp,

with

ζI = πREξ 2f ′(R)φ′
(0)(R). (A6)

Plugging the known forms of f (r) and φ(0) into the equation
yields Eq. (10).

APPENDIX B: CALCULATING HYDRODYNAMIC AND
INTERACTION DRAG: DIRECT AND RECIPROCAL

METHODS

The total drag force on the protein is

Fdrag =
∮

d�(σ + �) · n̂, (B1)

where the integral is around the boundary of the protein, n̂
is the outward-pointing normal, � is the stress tensor for the
order parameter [Eq. (6)], and σ is the hydrodynamic stress
tensor,

σij = −Pδij + ηm

(
∂vi

m

∂rj

+ ∂v
j
m

∂ri

)
, (B2)

where P is the membrane surface pressure and ηm is the
membrane surface viscosity. We note that there is also a
potential intrinsic drag term between the protein and the
substrate; see the main text and [41,42] for details. We can
calculate the total drag force in two main ways: (1) directly
evaluating the integral around the protein’s boundary, and
(2) using the reciprocal theorem. In the direct evaluation
method, we can determine the interaction drag either by
explicitly finding the O(Vp) correction to the concentration
field, φ(1), or using the divergence theorem. The major
advantage to the direct evaluation method is that the explicit
solution of the advection-diffusion equation can be avoided,
which reduces the number of boundary value problems to be
solved.

1. Direct calculation using surface pressure

In order to calculate Fhydro
drag = ∮

d� σ · n̂, we need to
determine the surface pressure P . We can use the approach
of Ref. [41]; we know by the symmetry of the problem that
P ′(ρ,θ ) = h(ρ) cos θ . We note θ̂ · ∇P ′ = − 1

ρ
h(ρ) sin θ , and

so we can extract h(ρ) directly from the θ̂ component of
Eq. (31),

h(ρ) = 2

ρ2
Y (ρ) − 2 + ρ2ε2

ρ
Y ′(ρ) + Y ′′(ρ) + ρY ′′′(ρ). (B3)

This is exactly the result of Ref. [41], as there is no θ̂

component to the composition-induced drag at linear order.
We can then perform the angular integral,

Fhydro
drag · x̂ = R

∫ 2π

0

[
σρρ cos θ − σρθ sin θ

]
, (B4)

yielding Fhydro
drag = −ζhydroVp, with

ζhydro = πηm[Y ′′′(1) − ε2]. (B5)

The interaction component of the drag can be computed
either by explicitly determining the stress tensor � to linear
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order in Vp, or by using the advection-diffusion equation, as
in Sec. II A.

a. Determining linear correction φ(1)

In order to determine the linear correction to the equilibrium
order parameter field, we can solve the advection-diffusion
equation, Eq. (22), perturbatively in Vp, similarly to the
procedure used in Appendix A. To linear order in Vp, with
φ(ρ) = φ(0)(ρ) + φbτg(ρ) cos θ ,[

g′′ + 1

ρ
g′ − 1

ρ2
g

]
− β2g = β3

(
1 − Y

ρ

)
K1(ρβ)

K0(β)
. (B6)

The boundary conditions on this boundary-value problem
are g(1) = 0 and g(ρ) → ∞ as ρ → ∞. This is straightfor-
ward to solve numerically once Y (ρ) is found via the method
in the main paper; we use bvp4c for this problem as well.

The function g(ρ) can also be used with Eq. (A6) to
determine the interaction drag,

ζI /ηm = −χ
π

β

K1(β)

K0(β)
g′(1). (B7)

b. Determining ζI without calculating φ(1)

The interaction component of the drag can be computed
without explicitly finding φ(1). First, by the divergence theo-
rem, we note

Fint
drag =

∮
d�� · n̂ (B8)

= −
∫

r�R

d2r ∇ · �. (B9)

We can use Eq. (22) to determine δH
δφ

∇φ = − 1
�

(vm − Vp) ·
∇φ∇φ. To linear order in V0, this force only depends on the
static profile φ(0), giving us

Fint
drag = 1

�

∫
r�R

d2r(vm − Vp) · ∇φ(0)∇φ(0) (B10)

= π
Vp

�

∫ ∞

1
dρ ρ

(
Y (ρ)

ρ
− 1

)
K2

1 (ρβ)

K2
0 (β)

, (B11)

i.e.,

ζI /ηm = πχ

∫ ∞

1
dρ ρ

(
1 − Y (ρ)

ρ

)
K2

1 (ρβ)

K2
0 (β)

. (B12)

2. Reciprocal theorem method

The integral
∮

d�(σ + �) · n̂ may also be evaluated simply
by using an identity derived from the reciprocal theorem [52]
of low-Reynolds number fluid mechanics (see [53,54] and
references within). This trick lets us determine the total drag
force on an object in a fluid flow v in terms of a simpler
“reference” flow ṽ in the same geometry.

Suppose that v and ṽ are two vector fields defined over the
volume V outside a surface S, and ∇ · v = ∇ · ṽ = 0. Then
let σ and σ̃ be the hydrodynamic stress tensors corresponding

10
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FIG. 16. (Color online) Calculation of ζtot does not depend
strongly on the numerical method used. The maximum relative
difference between these methods is 4 × 10−5. Parameters in this
calculation are the same as Fig. 8.

to v and ṽ, i.e., σij = −P (r)δij + η[∂ivj + ∂jvi] and σ̃ij =
−P̃ (r)δij + η[∂i ṽj + ∂j ṽi]. Then∫

dS n̂ · [v · σ̃ − ṽ · σ ] =
∫

dV [ṽ · (∇ · σ ) − v · (∇ · σ̃ )] ,

(B13)

where the normals n̂ point out from the surface. This result can
be derived in any dimension using the divergence theorem.

We can use this to reformulate the integral Fdrag =∮
d�(σ + �) · n̂; in this case, the surface S is just the perimeter

of the protein, r = R, and the volume V is the region outside of
the protein, r > R. We let v be a solution to the drag problem
of the membrane Stokes equation including the composition
force ∇ · �, i.e., v obeys Eq. (27) with the boundary conditions
v = Vp at r = R, and v → 0 as r → ∞. We then choose ṽ
to be the Evans-Sackmann solution [41], i.e., the solution of
Eq. (27) with ∇ · � = 0 with the boundary conditions ṽ = Ṽp

at r = R, and ṽ → 0 as r → ∞.
As the membrane Stokes equation [Eq. (27)] can be written

as ∇ · σ + ∇ · � − ηf

H
vm = 0, we find

∇ · σ = −∇ · � + ηf

H
v, (B14)

∇ · σ̃ = ηf

H
ṽ. (B15)

Using these results, and noting that on the boundary of the
protein, v = Vp and ṽ = Ṽp, we can simplify the reciprocal
theorem relation [Eq. (B13)], finding

Ṽp ·
∮

d� n̂ · σ −
∫

r�R

d2r ṽ · (∇ · �) = −Vp ·
∮

d� n̂ · σ̃ .

(B16)

Noting ṽ · (∇ · �) = ∇ · (ṽ · �) − ∇ṽ : � [where ∇ṽ :
� = (∂i ṽj )�ij ] and applying the divergence theorem,

Ṽp ·
∮

d� n̂ · [σ + �]

= −Vp ·
∮

d� n̂ · σ̃ −
∫

r�R

d2r ∇ṽ : � (B17)
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or

Ṽp · Fdrag = −ζEvans-SackmannṼp · Vp −
∫

r�R

d2r ∇ṽ : �.

(B18)

We note that ζEvans-Sackmann as used in this equation does
not include the “intrinsic drag” term addressed above, and
so is smaller than Eq. (30) by πηmε2. This equation writes
the drag on the protein only in terms of the reference flow
and the composition stress tensor �. To determine � to
leading order in Vp, we will have to solve the advection-
diffusion equation numerically. Once this is done, and we know
φ(1)(ρ,t) = φbτg(ρ) cos(θ ), Eq. (B18) yields Fdrag = −ζtotVp,

with

ζtot/ηm

= 1

ηm

ζEvans-Sackmann + χ

∫ ∞

1
dρ

π

β

K1(ρβ)

K0(β)

1

ρ2

×{[g(ρ) − 2ρg′(ρ)][Y (ρ) − ρY ′(ρ)] + ρ2g(ρ)Y ′′(ρ)}.
(B19)

3. Comparison of different calculation methods

We have found that as long as we solve the Stokes
equations on a sufficiently large domain that the boundary
conditions Y (ρmax) = Y ′(ρmax) = 0 can reasonably be applied,
the different solution techniques agree well (Fig. 16).
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[16] V. Démery and D. S. Dean, Europhys. J. E 32, 377 (2010).
[17] G. Guigas and M. Weiss, Biophys. J. 95, L25 (2008).
[18] A. Naji, P. J. Atzberger, and F. L. H. Brown, Phys. Rev. Lett.

102, 138102 (2009).
[19] E. Reister-Gottfried, S.M. Leitenberger, and U. Seifert, Phys.

Rev. E 75, 011908 (2007).
[20] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).

[21] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, UK,
2000).

[22] T. M. Squires and T. G. Mason, Annu. Rev. Fluid Mech. 42, 413
(2010).

[23] T. Murtola, T. Róg, E. Falck, M. Karttunen, and I. Vattulainen,
Phys. Rev. Lett. 97, 238102 (2006).

[24] T. Yamamoto and S. A. Safran, Soft Matter 7, 7021 (2011).
[25] T. Yamamoto, R. Brewster, and S. Safran, Europhys. Lett. 91,

28002 (2010).
[26] A. N. Beris and B. J. Edwards, Thermodynamics of Flowing

Systems with Internal Microstructure (Oxford University Press,
New York, 1994).

[27] H. Stark and D. Ventzki, Phys. Rev. E 64, 031711 (2001).
[28] M. E. Cates, O. Henrich, D. Marenduzzo, and K. Stratford, Soft

Matter 5, 3791 (2009).
[29] M. C. Watson, E. S. Penev, P. M. Welch, and F. L. Brown,

J. Chem. Phys. 135, 244701 (2011).
[30] M. Nagao, S. Chawang, and T. Hawa, Soft Matter 7, 6598 (2011).
[31] E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).
[32] J. Wohlert and O. Edholm, J. Chem. Phys. 125, 204703 (2006).
[33] N. Shimokawa, S. Komura, and D. Andelman, Eur. Phys. J. E

26, 197 (2008).
[34] P. de Gennes, Phys. Lett. A 30, 454 (1969).
[35] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics

(Clarendon Press, Oxford, 1999).
[36] Of course, this is really a perturbation series in the Peclet number

Pe = V0τ/R, where V0 is the characteristic velocity scale, R the
protein radius, and τ = 1/�E is the characteristic relaxation
time of the φ field.

[37] A.-F. Bitbol and J.-B. Fournier, Phys. Rev. E 83, 061107 (2011).
[38] A. Onuki, J. Phys.: Condens. Matter 9, 6119 (1997).
[39] B. J. Reynwar and M. Deserno, Biointerphases 3, FA117 (2008).
[40] E. P. Petrov and P. Schwille, Biophys. J. 94, L41 (2008).
[41] E. Evans and E. Sackmann, J. Fluid Mech. 194, 553 (1988).
[42] H. A. Stone and A. Ajdari, J. Fluid Mech. 369, 151 (1998).
[43] F. L. Brown, Q. Rev. Biophys. 44, 391 (2011).
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