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We consider the dynamics of phase separation in lipid bilayer membranes, modeled as flat two-dimensional liquid sheets
within a bulk fluid, both in the creeping flow approximation. We present scaling arguments that suggest asymptotic
coarsening in these systems is characterized by a length scale R(t) ∼ t1/2 for critical (bicontinuous) phase separation
and R(t) ∼ t1/3 for off-critical concentrations (droplet morphology). In this limit, the bulk fluid is the primary
source of dissipation. We also address these questions with continuum stochastic hydrodynamic simulations. We see
evidence of scaling violation in critical phase separation, where isolated circular domains coarsen slower than elongated
ones. However, we also find a region of apparent scaling where R(t) ∼ t1/2 is observed. This appears to be due to
the competition of thermal and hydrodynamic effects. We argue that the diversity of scaling exponents measured
in experiment and prior simulations can in part be attributed to certain measurements lying outside the asymptotic
long-length-scale regime, and provide a framework to help understand these results. We also discuss a few simple
generalizations to confined membranes and membranes in which inertia is relevant.
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The dynamics of phase separation in binary (and effectively
binary) systems is a rich field of study1–3. Coarsening is often
characterized by dynamical scaling laws1,4–6, which predict
physical properties that depend on time only through a sin-
gle emergent length scale, R(t). Systems obeying dynamical
scaling show self-similarity, in the sense that evolution in time
is statistically equivalent to a rescaling in space. Such behav-
ior has been well established in certain cases such as alloys
and the “diffusive growth” regime in binary fluids1. In other
systems, dynamical scaling is violated. For example, two-
dimensional (2D) binary fluids in the “viscous hydrodynamic
regime” (characterized by low Reynolds number “creeping”
flow) violate the scaling hypothesis7–9.

We study phase separation in a multicomponent lipid bi-
layer membrane. A membrane is often described as a “quasi-
two-dimensional fluid”10,11, in which the fluid flow within the
two-dimensional membrane is coupled to the flow of a less
viscous three-dimensional fluid surrounding the membrane.
Many of the anomalies of two-dimensional fluid flow at low
Reynolds numbers are altered by the presence of the bulk
fluid. For instance, the diverging mobility of a particle in a 2D
fluid at zero Reynolds number (Stokes paradox)12 is regulated
by the outside fluid viscosity10, and the slow

(
∼ t−1

)
decay

of velocity autocorrelations in 2D fluids13,14 crosses over to a
t−3/2 behavior in membranes15.

Phase separation within membranes is of theoretical inter-
est because the quasi-2D geometry incorporates both 2D and
3D fluid flow; the dynamics of interest are confined to a plane,
while the viscous dissipation extends to 3D space. Quasi-
2D hydrodynamics are known to be relevant for the diffu-
sion of membrane-embedded objects, as proteins16 as well as
larger bodies within membranes17 have diffusion coefficients
in agreement with quasi-2D hydrodynamic theory10,18. Be-
yond simple diffusion, the quasi-2D hydrodynamics also af-
fects the dynamics of hydrodynamic correlations of particles
in a membrane11, membrane domain fluctuations19,20, and the
dynamics of critical fluctuations in membranes21–23. This fluid

geometry also has broader importance in the context of lipid
monolayers24, colloidal particles at interfaces25, and thin liq-
uid crystal films26.

Equally strong motivation for the study of dynamics in mul-
ticomponent lipid bilayers is biological/biophysical. An inter-
est in the biological activity of lipid rafts27,28 has motivated
the experimental study of phase separation in multicomponent
“model membrane” systems29,30, including the measurement
of scaling exponents31–33. Recent simulations have also ad-
dressed these questions34–37, demonstrating the importance of
hydrodynamics in the coarsening process. However, reported
scaling exponents and even the presence of scaling vary from
paper to paper, and no framework exists for interpreting these
results. Comparison between these different simulations is in
part confounded by the limitations of each approach. Dissi-
pative particle dynamics simulations34,35 may have unphysi-
cally low membrane viscosities; in particular, Ramachandran
et al.35 note that their membrane viscosity is of the order of
their water viscosity. Binary fluid models allow both mem-
brane and outer fluid viscosity to be changed, but lack molec-
ular details; the simulations of Fan et al.37, which display scal-
ing violation, do not include thermal fluctuations. Though
thermal fluctuations are believed to be asymptotically irrel-
evant in the coarsening of many systems, they play a role in
the coarsening of binary fluids by driving coalescence1, which
is the primary observed mechanism of phase separation in off-
critical lipid membranes29. To understand coalescence dy-
namics and address the inconsistencies between earlier sim-
ulations, it is important to simulate systems including thermal
fluctuations.

Our simulation technique, first introduced in36, uses hy-
drodynamic equations with Langevin forces that obey a
fluctuation-dissipation theorem, reproducing known equilib-
rium and dynamic behavior for membranes. This allows us
to explicitly look at coarsening dynamics for both critical and
off-critical systems, including the diffusion and coalescence
mechanism. We also present simple scaling laws that are
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consistent with observed scaling exponents where dynamical
scaling is present, and use these scaling laws to clarify regimes
where different coarsening mechanisms should dominate. We
also identify where scaling laws appear to be violated.

As is customary1, we describe phase separation via a com-
position phase field φ(r) (e.g. φ = χA − χB for a mix-
ture of A and B, where χi are mole fractions) and a stan-
dard Landau-Ginsburg free energy for a binary mixtures H =∫
d2r

[
− ε

2φ
2 + u

4φ
4 + γ

2 |∇φ|
2
]

1,5. The field is confined to
a flat geometry, r = (x, y), and the parameters ε,u, and γ are
determined by the physical observables σ, the line tension be-
tween coexisting phases, ξ, the interface width, and φ0, the
equilibrium composition of one phase. The field evolves via
overdamped Model H1,5 dynamics:

(∂t + v · ∇)φ(r, t) = M∇2 δH

δφ(r, t)
+ θ(r, t) (1)

vi(r, t) =
∫
d2r′ Tmij (r− r′)

[
δH

δφ
∇′jφ(r′, t) + ζj(r′, t)

]
.

The transport coefficient M is related to the bulk concentra-
tion diffusion coefficient Dφ = 2Mε and the tensor Tmij (r)
is the Green’s function for velocity response to an applied
point force in the membrane plane (see Eq. 2). θ(r, t) and
ζj(r, t) are Gaussian white random forces with variances cho-
sen to satisfy the fluctuation-dissipation theorem; the multi-
plicitive noise inherent to Eq. 1 must be interpreted within
the Stratonovich convention (see Appendix). We will evolve
Eq. 1 numerically on anN ×N lattice; N = 1024 for all sim-
ulations presented in this paper. The theoretical framework is
identical to that described in36 and readers are referred there
for further details, especially concerning numerical solution
of the equations.

We adopt the Saffman-Delbrück hydrodynamic model10,
treating the membrane as a thin 2D fluid, immersed within a
lower-viscosity bulk fluid. This leads to a crossover in Tmij (r)
whereby forces are transmitted via the membrane over short
distances and by the outside fluid at longer distances24. This
behavior is most clearly apparent in the Fourier transform of
Tmij (r), Tmij (q) ≡

∫
d2r Tij(r)e−iq·r,

Tmij (q) =
1

ηm(q2 + q/Lsd)

(
δij −

qiqj
q2

)
(2)

where the Saffmann-Delbrück length scale Lsd = ηm
2ηf

is set
by the ratio of the membrane surface viscosity ηm and the
outside fluid viscosity ηf . Eq. 2 reduces to the purely 2D
response Tm(r) ∼ ln(r) for r � Lsd, but behaves like
Tm(r) ∼ 1/r, characteristic of 3D fluid response, when
r � Lsd. Although the dynamics contained within Eqs. 1
and 2 are confined to a 2D plane, they are governed by im-
plicit hydrodynamic flows in 3D and will be referred to as
“quasi-2D” henceforth. For convenience, we will refer to the
two limiting hydrodynamic regimes mentioned above as the
“2D” and “3D” limits of the quasi-2D model. Other parame-
ters, such as the transport coefficient M and the temperature
will also affect the scaling exponent; we present the various
regimes of the model described by Eq. 1 in Table I.

I. SCALING THEORIES OF COARSENING IN A QUASI-2D
MEMBRANE

A. Dynamical scaling

The dynamical scaling hypothesis implies that the struc-
ture function S(q, t) = 〈φq(t)φ−q(t)〉 only depends on time
through a single, emergent length scale R(t)1,4:

S(q, t) = Rd(t) g (qR(t)) (3)

where g(x) is a scaling function dependent only on x and d the
dimensionality of the space where φ(r, t) is specified (d = 2
in our case). The dependence of R(t) on t is often taken to be
a simple power law, R(t) ∼ tα. Dynamical scaling is well-
established for binary alloys, and several regimes of binary
fluids, and in many cases the dynamical exponents α can be
extracted by simple scaling analysis1. We extend these classi-
cal results to phase separation in a simple model membrane.

Assuming dynamical scaling holds, the only relevant length
scale is R(t) and it becomes possible to estimate the various
contributions to Eq. 1 in a scaling sense, e.g. ∇ ∼ 1/R(t),
d2r ∼ R2(t). The term δH/δφ has units of energy per area;
if the line tension σ is driving the coarsening, then δH/δφ ∼
σ/R(t). The Oseen tensor has two characteristic regimes,
Tm ∼ η−1

m lnR(t) for R � Lsd and Tm ∼ 1/ηfR(t) for
R� Lsd.

If we apply these scaling rules to the velocity part of Eq. 1,
we find R(t) ∼ t up to logarithmic corrections for R � Lsd,
the 2D viscous (2DV) regime, and R(t) ∼ t1/2 for R� Lsd,
the 3D viscous (3DV) regime. We see that the dynamics of
systems below and above the Saffman-Delbrück length are
expected to be quantitatively and qualitatively different. Our
scaling theory predicts α = 1 for R � Lsd (2DV). This
is also the scaling theory result for ordinary binary fluids in
the viscous limit, independent of dimension1. However, nu-
merical simulations are consistent with α = 1 in three di-
mensional simple binary fluids38, but scaling is violated in
two-dimensional binary fluids in the viscous limit7,9, sug-
gesting that scaling analysis may be insufficient in the limit
R� Lsd.

There are several well-known complications to this basic
picture: these scaling laws are only expected to be relevant
for critical concentrations (〈φ〉 = 0)1, and temperature may
play a role1,39. We can address the relevance of these issues
by applying the renormalization group technique of Bray1.
We coarse-grain the field φ by eliminating modes φk(t) with
Λ/b < k < Λ, where Λ ∼ 1/ξ is an ultraviolet cutoff. We
rescale the equations of motion (Eq. 1) and look for fixed
points, which determine the asymptotic scaling of R(t). Bray
notes that though this elimination step of renormalization can-
not be carried out, the k → 0 singularity (due to the local con-
servation of material) cannot be changed by removing “hard”
large-k Fourier components φk(t), which allows the recursion
relations for a scaling fixed point to be written down. This
does assume the existence of a scaling fixed point, and so may
produce incorrect results in limits where the scaling hypothe-
sis breaks down.



3

Critical mixture (〈φ〉 = 0)
Regime α (scaling theory) α (simulation)

R� Lsd (2D regime)
R(t)�

√
Mηm 2D Cahn-Hilliard (2DCH) 1/3 0.34± 0.02

R(t) &
√
Mηm 2D viscous (2DV) 1 †

R(t)� Lsd (3D regime)
R(t)�Mηf 3D Cahn-Hilliard (3DCH) 1/3 0.35± 0.02
R(t)�Mηf 3D viscous (3DV) 1/2 †

Off-critical mixture (〈φ〉 6= 0)
R� Lsd (2D regime)
R(t)� ηmMσ/kBT 2D Ostwald ripening (2DO) 1/3 0.32± 0.02
R(t) & ηmMσ/kBT 2D coalescence (2DC) 1/2 0.47± 0.08

R(t)� Lsd (3D regime)
σMηf � kBT 3D Ostwald ripening (3DO) 1/3 0.32± 0.04
σMηf � kBT 3D coalescence (3DC) 1/3 0.30± 0.09

TABLE I. Summary of dynamical scaling properties. Theoretical predictions from scaling laws are presented as simple fractions. Exponents
are extracted from fittingR1(t) as extracted from Eq. 5. In the viscous critical mixtures, (†), scaling violation is observed for some parameters.
Uncertainties given are a combination of systematic uncertainty from varying n in Eq. 5 and the fitting range, and the statistical variation in α.
Large systematic errors are observed for coalescence regimes, but it is unclear if this is due to violation of scaling or limited simulation length.
〈φ〉 = -0.2 in all off-critical simulations.

We apply this procedure in the 3D regime (Tm(r) ∼
1/ηfr), which gives renormalization equations

M ′ = b
1
α−3M(

1
ηf

)′
= b

1
α−2

(
1
ηf

)
T ′ = b−1T (4)

These recursion relations show that in the 3D limit, the Cahn-
Hilliard (3DCH) fixed point, α = 1/3, is unstable to the
introduction of hydrodynamic interactions. Instead, asymp-
totic scaling dynamics are controlled by the α = 1/2 vis-
cous fixed point (3DV), where bulk diffusion (as described
by M ) is irrelevant. This is consistent with our scaling esti-
mates. These results apply only to mixtures with 〈φ〉 = 0. For
off-critical concentrations, the bicontinuous morphology is re-
placed by droplets and hydrodynamic effects are suppressed1;
the α = 1/3 fixed point is expected to be restored asymptoti-
cally.

Thermal fluctuations complicate this analysis for off-
critical coarsening. The mechanism of the “diffusive”
regime is Ostwald ripening / Lifshitz-Slyozov-Wagner (LSW)
evaporation-condensation1. Finite temperature causes domain
coalescence to compete with ripening. If there is only one
length scale R(t) in the problem, then R(t)2 ∼ Dt, where D
is the diffusion coefficient of a domain of size R. In a quasi-
2D fluid, D ∼ ln(Lsd/R) for R � Lsd and D ∼ 1/R for
R � Lsd

40,41. This would suggest R(t) ∼ (kBT t/ηm)1/2
(α = 1/2) in the 2D coalescence (2DC) regime, up to log-
arithmic corrections, but R(t) ∼ (kBT t/ηf )1/3 (α = 1/3)
in the 3D coalescence (3DC) regime. These scaling results
have also been noted by earlier papers37,42. For the 3D limit,
the scaling exponents for diffusive growth and coalescence are
identical, as in pure 3D fluids. This results from T/ηf being a
marginal variable at the diffusive (α = 1/3) fixed point in the
renormalization treatment above.

To determine which regime a phase-separating system is in,
we apply our earlier scaling estimates to Eq. 1, and determine
the relative magnitude of the advective and diffusive terms.
The magnitude of the advective term is σTm(R)/R, and the
diffusive term is Mσ/R3, where Tm(R) is the order of mag-
nitude of the Oseen tensor: Tm(R) ∼ 1/(ηfR) for R� Lsd
(3D regime), and Tm(R) ∼ ln(R/Lsd)/ηm for R � Lsd
(2D regime). Therefore, we expect advection to be negligible
whenR�Mηf in the 3D regime, and whenR�

√
Mηm in

the 2D regime. We can calculate the relative importance of co-
alescence and the LSW evaporation-condensation mechanism
similarly, by comparing the length scales for coalescence with
the evaporation-condensation length scale R(t) ∼ (Mσt)1/3.
These results are summarized in Table I.

B. Caveats of scaling

The scaling approach begins with the assumption of the dy-
namical scaling form, Eq. 3. We note that this scaling form is
only a hypothesis, primarily supported by numerical simula-
tion, and only established exactly for a few one-dimensional
systems1. When would we expect the scaling hypothesis to
be true? We have assumed that the only relevant length scale
is the emergent length scale R(t), which obviously requires
that R(t) � ξ (ξ is the thermal correlation length), as well
as R(t) � Lsys. In addition, we would not expect scaling if
R(t) is close to the Saffman-Delbrück length Lsd, i.e. scaling
is only likely if R(t)� Lsd or R(t)� Lsd.

Less obviously, other emergent length scales can appear if
bulk diffusion is slow relative to hydrodynamic flows, leading
to systems where there are deviations from the equilibrium
concentrations ±φ0 over large regions of space43,44. We see
this in our simulations in certain limits, in which the inter-
faces become “smeared” over a large region, and as they are
not in local equilibrium, secondary phase separations44 can
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occur (see Fig. 2 at kBT = 0). Scaling will only be seen
if diffusion is fast enough to preserve the concentration pro-
file near the interface in local equilibrium38; this is effectively
the “sharp interface” limit for phase-field simulations used to
simulate multiphase flow45. Of course, if local diffusion is too
fast (large M ), we will be close to the diffusion-dominated
(Cahn-Hilliard) regime, which may lead to inaccuracies; this
is the “residual diffusion” problem, which is well addressed
in Kendon et al.38. These issues are also important to the co-
alescence limit, but with an additional feature; even if we set
the viscosities ηm and ηf to be infinite, if M 6= 0, the domain
will still diffuse due to the stochastic term in Eq. 1.

II. SIMULATION RESULTS

A. Importance of thermal fluctuations

Thermal fluctuations, though generally believed to be irrel-
evant at long times in coarsening, can drive coalescence in
binary fluids. At the first, qualitative level, we compare phase
separation in membranes with and without thermal fluctua-
tions, using realistic parameters. We simulate phase sepa-
ration from an initially homogenous state with 〈φ〉 = 0 by
application of Eq. 1. We select parameters to model experi-
ments on ternary giant unilammelar vesicles; these parameters
are known to reproduce the experimental time scale and mor-
phology, and are consistent with measured viscosities and line
tensions36. We also perform an analogous simulation, but with
thermal fluctuations turned off (Fig. 1). For this simulation,
we choose an initial state with 〈φ〉 = 0 with small Gaussian
fluctuations, with a standard deviation of 0.01; a perfectly ho-
mogenous state has no gradients, and is thus a steady state of
Eq. 1 if kBT = 0.

Two features of phase separation at kBT = 0 are obvious
from Fig. 1: the coarsening process is slower than the finite-
temperature result (note the different time scales), and there
are more small domains at long times. The altered time for
coarsening is largely due to the initial time required to form
the bicontinuous structure, which is long due to the small in-
fluence of bulk diffusion in this system (i.e. the Peclet num-
ber Pe = Lv/Dφ is large, where L and v are characteristic
length and velocity scales, and Dφ the diffusion coefficient).
The relatively large population of small domains is unsurpris-
ing, as in two-dimensional binary fluids in the viscous limit,
isolated domains coarsen at a slower rate than the bicontinu-
ous structure7. The absence of thermal fluctuations removes
a coalescence mechanism for the coarsening of these isolated
domains. We also note that the excess small domains are not
merely an artifact of the different timescales; there are no ad-
ditional domain mergers in the kBT = 0 simulation up to at
least 100 seconds (data not shown).

We also note that in the limit of kBT = 0, the order parame-
ter does not take on its equilibrium values±φ0, even far away
from the interface, until roughly ∼ 25 seconds, and there are
gradients in φ over length scales much larger than the inter-
face length. As noted in earlier sections, we would not neces-
sarily expect to see scaling if diffusion is much, much slower

FIG. 1. Thermal fluctuations are important to the dynamics of sys-
tems parameterized to model real experimental conditions. Both
top and bottom images are snapshots of the coarsening process in
the model system described in36, based on DOPC/DPPC/Cholesterol
vesicles. The top images are from a simulation that includes the ef-
fect of thermal fluctuations with T = 21◦ C (kBT = 4.061 pN nm),
while the bottom images are from a simulation with no fluctuations,
kBT = 0. Including thermal fluctuations speeds up coarsening and
provides an alternative route for isolated domains to coarsen, leading
to fewer domains at long times. For this simulation, ηm = 5× 10−6

s.P., ηf = 0, line tension σ = 0.1 pN, interface width ξ = 40 nm,
and system size of 30µm ×30µm. The concentration diffusion co-
efficient Dφ = 2Mε = 6.5 × 10−10 cm2/s. TOP: kBT = 4.061
pN nm, ∆t = 20µs. This simulation is an extended run of the one
presented in36. BOTTOM: kBT = 0, ∆t = 50µs.

than the hydrodynamics (large Peclet number), and this is one
case of this effect. If we reduce the membrane viscosity or
decrease the diffusion coefficient, we can exaggerate this vio-
lation of scaling (Fig. 2). This limit has been well-explored by
Vladimirova et al43 for a two-dimensional binary fluid. How-
ever, this regime may not be physical; to obtain the extreme
behavior of Fig. 2, we have chosen a membrane viscosity two
orders of magnitude below those measured in20, while keep-
ing the concentration diffusion coefficient far below the ex-
pected order of magnitude of kBT/4πηm. This behavior is
also completely destroyed by including thermal fluctuations
(Fig. 2, top). Once again, we see that thermal fluctuations can
both accelerate the phase separation and destroy large-scale
gradients in φ(r, t).

B. Characterizing the length scale R(t)

The dynamical scaling hypothesis implies that the struc-
ture function S(q, t) = 〈φq(t)φ−q(t)〉 only depends on time
through R(t) (Eq. 3). The dynamic length scale R(t) may
be extracted from S(q, t) by taking moments of the circularly
averaged structure function, S(q, t):

Rn(t) ≡ 2π
(∫

dq qnS(q, t)∫
dqS(q, t)

)−1/n

∼ R(t) (5)

Different values of n in Eq. 5 are guaranteed to reproduce
the same scaling exponent if Eq. 3 is obeyed. However, in
pure 2D fluids at low Reynolds number, different moments
yield different scaling exponents αn, showing a violation of
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FIG. 2. If bulk diffusion is slow compared to hydrodynamic effects,
the effects of thermal fluctuations are more apparent; as in the system
of Fig. 1, fluctuations significantly speed up coarsening and prevent
large-scale gradients in φ(r, t) from forming, completely suppress-
ing the morphology observed at kBT = 0. ηm = 5× 10−8 surface
Poise (s.P., Poise-cm), ηf = 0.01 Poise, line tension σ = 0.2 pN,
interface width ξ = 20 nm, a system size of 20µm×20µm, and con-
centration diffusion coefficient Dφ = 2Mε = 1.3 × 10−10 cm2/s.
TOP: T = 21◦ C, ∆t = 30 ns. BOTTOM: kBT = 0, ∆t = 100µs.

dynamic scaling8. Because some of these moments may not
converge in general, we have applied the cutoff of8, integrat-
ing Eq. 5 only up to 5qpeak, where qpeak is the location of
the structure function’s maximum. We average over three in-
dependent runs, in addition to the angular average over each
run, to construct S(q, t).

C. Critical composition, R� Lsd (3D viscous / 3DV)

We first consider dynamics in the asymptotic long time
limit (R(t) � ξ, Lsd) for critical compositions (〈φ〉 = 0,
leading to bicontinuous morphologies). This limit is difficult
to reach unambiguously using physical parameters and length
scales fully consistent with experimental measurements. In-
stead, we achieve the R(t) � Lsd 3D limit associated with
the final phases of coarsening by choosing ηf = 4 Poise (400
times higher than water); this sets Lsd = 6 nm when we
choose all other parameters consistent with experimental val-
ues. Eq. 1 was numerically solved on a 1024 x 1024 discrete
grid for an initial condition of φ = 0 everywhere; the results
are shown in Fig. 3 along with the full set of parameter val-
ues. These values have also been chosen to minimize residual
diffusion (to 15%), while still preserving local equilibrium, as
in38.

For theR(t)� Lsd limit of Fig. 3, we find thatRn(t) ∼ tα
for integer and half-integer modes −3 ≤ n ≤ 3, with α =
0.51± 0.03 (Fig. 4).

To ensure that the scaling hypothesis is valid, we can use
our scaling exponent to rescale either the concentration field
(as in7) or the structure function (as in46). For each snapshot
in the top row of Fig. 3, we rescale the image by a factor
(tend/t)1/2 ; if the dynamic scaling hypothesis is satisfied with
exponent α = 1/2, these images should be statistically sim-
ilar, as they are. We can see the scaling of Eq. 3 explicitly
by collapsing onto the form g(qR) = S(q, t)/R2(t), with

FIG. 3. Apparent dynamic scaling in the “3D viscous hydrodynamic”
limit. TOP: Evolution of concentration field. BOTTOM: Lower row
images are obtained by rescaling (i.e. zooming in) and cropping the
upper row images by a factor of (1.4s/t)1/2. These images show
qualitative similarity in morphology and length scale, suggesting the
presence of dynamic scaling with exponent 1/2 (see text). ηm =
5 × 10−6 surface Poise (s.P., Poise-cm), ηf = 4 Poise, line tension
σ = 0.8 pN, interface width ξ = 5 nm, and system size of 5µm
×5µm, and timestep 4 µs, and concentration diffusion coefficient
Dφ = 2Mε = 6.5× 10−10 cm2/s.
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FIG. 4. In the 3D viscous limit (3DV), we see that the scaling of
Rn(t) is consistent with Rn(t) ∼ tα with α = 0.5, with Rn(t)
calculated from Eq. 5. Rn(t) is extracted from the structure func-
tion S(q, t) evaluated from three independent simulations with the
parameters of Fig. 3, as described in Section II B. The mean value
of α is 0.51, with standard deviation 0.03. The curves in this figure
have been smoothed for clarity.

R(t) = (σt/ηf )1/2, the value predicted theoretically (see
Section I). This result is plotted in Fig. 5.

Though we see scaling at this particular set of parameters,
this is not a universal feature of the system. Scaling violations
have previously been shown to occur in the two-dimensional
limit of our model7,8. Recently, Fan et al. have also noted
that scaling is not seen in this system at zero temperature37.
Their model is, up to numerical implementation, the kBT = 0
case of our simulations in this and an earlier paper36. We
also observe scaling violation at zero temperature, consistent
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FIG. 5. The structure function S(q, t) collapses onto the universal
form g(x) = S(q, t)/R(t)2 as a function of x = qR(t) for the
parameters of Fig. 3. This explicitly shows the scaling of Eq. 3 with
R(t) = (σt/ηf )1/2.

with the simulations of Fan et al.37. Scaling violation is also
apparent at nonzero temperatures, depending on the line ten-
sion of the system (Fig. 6). Recent experiments observe both
the morphology of Fig. 3 and Fig. 6, even on identically-
prepared vesicles47. Line tensions are known to vary signifi-
cantly from vesicle to vesicle, potentially due to composition
differences48, which may explain the different morphologies
observed.

FIG. 6. If the line tension is increased, reducing the influence of
thermal fluctuations, scaling violation may be observed in the “3D
viscous hydrodynamic limit,” as opposed to the apparent scaling of
Fig. 3. TOP: Evolution of concentration field. BOTTOM: Rescal-
ing with exponent 1/2 shows scaling violation. ηm = 5 × 10−6

surface Poise (s.P., Poise-cm), ηf = 4 Poise, line tension σ = 4
pN, interface width ξ = 5 nm, and system size of 5µm ×5µm, and
timestep 2 µs, and concentration diffusion coefficient Dφ = 2Mε =
6.5× 10−10 cm2/s. T = 21◦ C (kBT = 4.061 pN nm).

Why does the membrane system of Fig. 3 display dynam-
ical scaling while the system with larger line tension, Fig. 6,
does not? Scaling violation in an ordinary two-dimensional
binary fluid has been observed when isolated circular domains
coarsen at a different rate than continuous, elongated ones7.

In fact, Bray had earlier noted that the hydrodynamic term of
Eq. 1 should vanish for a single spherical droplet in the ab-
sence of noise1. This basic fact implies that droplets will not
merge at a sufficiently fast rate to keep up with the bicontinu-
ous phase, leading to morphologies like that of Fig. 6.

In the system with lower line tension, Fig. 3, we observe
that these domains merge and coalesce, rather than remain-
ing isolated. We believe that this is related to the presence of
thermal fluctuations, as scaling is never observed in the zero-
temperature 3DV limit, either in our simulations or in those
of Fan et al.37. As discussed earlier, thermal coalescence pro-
vides an additional mechanism for the coarsening of isolated
domains. In addition, scaling violation is observed as the line
tension is increased. Making the line tension larger has two
immediate effects: it increases the speed of line-tension driven
coarsening relative to coarsening due to thermal coalescence,
and it suppresses fluctuations of domain boundaries. Both ef-
fects reduce the importance of thermal noise. Our renormal-
ization group arguments suggest that temperature should be
irrelevant at long times, but our simulations show that thermal
noise may create very good apparent scaling.

D. Critical composition, R� Lsd (2D viscous / 2DV)

Lowering the bulk viscosity but maintaining critical con-
centrations leads to a violation of scaling, as for a pure 2D
fluid (Fig. 7). In these cases, the absence of scaling is clear, as
morphological changes between continuous structure and iso-
lated domains are observed. This is made evident by attempt-
ing to rescale the concentration field by using the exponent
α1 ≈ 1 (Fig. 7, bottom). Similar morphological changes are
observed experimentally in phase-separating giant unilamel-
lar vesicles29. Fitting Rn(t) to the form tαn , we find αn to
vary between 0.8 and 1.2 for n = integers and half integers
from -3 to 3. This also provides supporting evidence for the
breakdown of dynamical scaling, as we would expect αn to
be independent of n if Eq. 3 holds. The variation in αn here
differs from the errors reported in Table I, which also include
statistical errors and systematic errors in α from changing the
fitting range.

E. Off-critical coalescence, R� Lsd (3D coalescence /
3DC)

For an offcritical system, 〈φ〉 6= 0, at length scales above
the Saffman-Delbrück length (R(t) � Lsd) we expect that
thermally-driven domain coalescence will drive coarsening if
kBT � σMηf . We simulate a system with ηf chosen to
be large enough that Lsd is small compared to the interface
width. We also ensure that kBT/σMηf ≈ 300 is large, plac-
ing us clearly in the coalescence region (Table I). We can ob-
serve visually that domain diffusion and coalescence is the
primary source of coarsening (Fig. 8). We also observe scal-
ing with the predicted exponent of 1/3 (Fig. 8 and Fig. 9),
though the uncertainty on this exponent is large (Table I). We
note that the predicted theoretical exponent has been derived
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FIG. 7. Scaling is violated in pure two-dimensional systems. TOP:
Evolution of concentration field. Morphological changes show scal-
ing violation. BOTTOM: Rescaling with α = 1 shows scaling is
absent (see text). ηm = 5 × 10−6 s.P., ηf = 0, line tension
σ = 0.1 pN, interface width ξ = 40 nm, and system size of 30µm
×30µm, and timestep 10 µs. The concentration diffusion coefficient
Dφ = 2Mε = 6.5 × 10−10 cm2/s. T = 21◦ C (kBT = 4.061 pN
nm).

in the context of sharp-interface theories, and if this limit is
not appropriate to the phase field simulations, other results
may be possible45.

FIG. 8. Thermally-driven coalescence leads to scaling with exponent
1/3 for R � Lsd. TOP: Evolution of concentration field. BOT-
TOM: Rescaling with α = 1/3 shows dynamical scaling for all but
the shortest times. ηm = 5 × 10−6 s.P., ηf = 5 Poise, line tension
σ = 0.4 pN, interface width ξ = 15 nm, and system size of 10µm
×10µm, and timestep 25 µs. Dφ = 1.3×10−10 cm2/s. 〈φ〉 = −0.2.
T = 21◦ C (kBT = 4.061 pN nm)

F. Off-critical coalescence, R� Lsd (2D coalescence /
2DC)

Below the Saffman-Delbrück length (R(t)� Lsd), domain
diffusion coefficients scale logarithmically with domain size,
and we expect domain coalescence to dominate for length
scalesR(t) larger than ηmMσ/kBT . We simulate a system in
the pure two-dimensional limit, ηf = 0, with ηmMσ/kBT =
0.5 nm, placing us in the 2D coalescence regime. Domain
diffusion and coalescence is the primary source of coarsening
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t = 15 s

t = 22.5 s
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FIG. 9. Collapse plot of g(x) = S(q, t)/R(t)2 as a function of
x = qR(t) explicitly shows the scaling of Eq. 3 with R(t) =

(kBTt/ηf )1/3. Data corresponds to the same simulations as in
Fig. 8.

(Fig. 10). The predicted exponent of 1/2 is observed (Fig. 10
and Fig. 11).

FIG. 10. Thermally-driven coalescence leads to scaling with expo-
nent 1/2 for R � Lsd. TOP: Evolution of concentration field in
2D coalescence limit. BOTTOM: Rescaling with α = 1/2 shows
dynamical scaling for all but the shortest times. ηm = 5× 10−6 s.P.,
ηf = 0, line tension σ = 0.1 pN, interface width ξ = 40 nm, and
system size of 10µm×10µm, and timestep 5 µs. Dφ = 6.5×10−10

cm2/s. T = 21◦ C (kBT = 4.061 pN nm). 〈φ〉 = −0.2.

G. Barely off-critical systems

In a system barely off the critical 50% area fraction, an ini-
tial bicontinuous structure will form, but this pattern is unsta-
ble, and will break down into isolated domains (Fig. 12). This
is a particularly relevant issue for experiments, as different
vesicles prepared identically may have compositions differing
by a few percent29,48.
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FIG. 11. Collapse plot of g(x) = S(q, t)/R(t)2 as a function of
x = qR(t) explicitly shows the scaling of Eq. 3 with R(t) =

(kBTt/ηm)1/2. Data corresponds to the same simulations as in
Fig. 10.

FIG. 12. If the composition is not precisely at the critical area frac-
tion, the bicontinous structure is unstable to the formation of do-
mains. ηm = 5×10−6 surface Poise (s.P., Poise-cm), ηf = 4 Poise,
line tension σ = 4 pN, interface width ξ = 5 nm, and system size of
5µm ×5µm, and timestep 2 µs, and concentration diffusion coeffi-
cient Dφ = 2Mε = 6.5× 10−10 cm2/s. T = 21◦ C (kBT = 4.061
pN nm). 〈φ〉 = −0.05, corresponding to a 56-44 mix.

III. RELATION TO EXPERIMENTS AND OTHER
SIMULATIONS

Coarsening has been directly measured in offcritical mul-
ticomponent lipid vesicles31,32, with results for the coarsen-
ing exponent varying between R ∼ t0.15 and R ∼ t2/3.
We argue that these experiments may not be probing a sin-
gle scaling regime. We first determine the likely regimes of
these experiments. In real membranes, M and ηm are cou-
pled, as Dφ = 2Mε ≈ kBT/(4πηm). Applying this result
and determining ε from typical line tensions (σ ∼ 0.1 pN)
interface widths (ξ ∼ 10 nm) and compositions (φ0 ≈ 0.4)
as in36, sets

√
Mηm,Mηf < 10 nm, suggesting that exper-

iments fall well outside the Cahn-Hilliard regime. This is
consistent with experimental results that report coalescence,
not ripening29,32. In standard model membranes, ηm lies in
the range (0.1 − 10) × 10−6 surface poise (poise-cm, or
grams/s)17,49,50, corresponding to Lsd ∼ 0.1 − 10 microns.
Micron-scale domains measured in31,32 are likely to be inter-
mediate between the regimes of 2D and 3D coalescence, and

these experiments may not measure a common scaling expo-
nent.

We emphasize that without characterization of (at the least)
membrane viscosity, coarsening measurements on membranes
are not readily interpreted; apparent values of α from simula-
tions outside a clear scaling limit have ranged from 0.2− 1.2.
The 3D regime (Lsd � R(t) � Rvesicle) may be enlarged
by increasing solution viscosity, thereby decreasingLsd, or by
increasing vesicle radii. This would ensure that experimental
measurements are observing a single well-defined regime.

Experiments measuring coarsening in supported mem-
branes report an offcritical-mixture exponent of α = 0.3133.
Our scaling results are readily generalized to such a case. For
membranes separated from a wall by a thin layer of fluid of
size h � Lsd, Tm(r) ∼ 1/r2 for large r24,51, and scaling
theory gives α = 1/3 for both diffusive and hydrodynamic
coarsening, but α = 1/4 for the coalescence mechanism (this
is discussed in greater detail below).

Previous simulations using dissipative particle dynamics
have also reported R(t) ∼ t1/2 for critical mixtures, R(t) ∼
t1/3 for off-critical34; other dissipative particle dynamics sim-
ulations report t1/3 for both critical and off-critical scaling35.
Our theory explains the inconsistency between these two re-
sults as a result of the two simulations being in different
regimes (Table I). Both models have similar line tensions
(∼ 10 pN) and explore the range R � Lsd, but the model
of Ramachandran et al.35 represents lipids as single particles,
while the model of Laradji and Kumar34 includes a more re-
alistic representation of lipid structure, and likely has an in-
creased membrane viscosity and decreased mobility M rela-
tive to that of35. In our simulations, decreasing M by a factor
of 20 can change the scaling exponent from α ∼ 1/3 (3D
Cahn-Hilliard regime) to α ∼ 1/2 (3D viscous regime).

IV. SIMPLE GENERALIZATIONS

Our simulation and scaling theory both admit some very
simple generalizations. The hydrodynamics of a supported
lipid membrane are well-understood, and lead to versions of
the membrane Oseen tensor (Eq. 2) that have long-distance
dependence of r−1 or r−2, depending on the distance be-
tween the membrane and the substrate51. In the “free far”
region where the Oseen tensor has an r−1 dependence, the
coarsening kinetics should be essentially the same as our 3D
viscous regime. However, in the “adsorbed” and “supported
hovering” limits, where T (r) ∼ r−2, our dimensional anal-
ysis arguments give α = 1/3 for both diffusive (LSW) and
hydrodynamic coarsening (i.e. the viscosity of the bulk fluid
is a marginal variable). Diffusion coefficients D(R) ∼ R−2

for objects in a supported membrane in this limit51,52; setting
D(R)t ∼ R(t)2 gives α = 1/4 for the coalescence mech-
anism. These results are identical to those for coarsening in
a Hele-Shaw cell1, as the supported membrane Oseen tensor
naturally reduces to the Hele-Shaw result when the drag from
the substrate is large.

While dynamical scaling breaks down in two-dimensional
fluids in the viscous limit, it is restored in the inertial limit8,9.
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Though the Reynolds number of flows in membranes is gener-
ally small10, and thus we generally expect inertial effects to be
negligible, it may be interesting to explore phase separation in
this limit. We can derive a generalized, frequency-dependent
Oseen tensor that includes the effects of inertia15

T ijinertial(k, ω) =
δij − kikj/k2

iωρm + ηmk2 + 2ηfk
√

1 + iω/ωf (k)
(6)

where ρm is the two-dimensional membrane mass density, ρf
the bulk fluid density, and ωf (k) = ηfk

2/ρf . The equation
of motion for the membrane velocity is then

vi(k, ω) = T ijinertial(k, ω)fj(k, ω) (7)

where f is the force applied to the membrane,
f(r, t) = δH

δφ∇φ + ζ. Our convention is f(k, ω) =∫
d2rdte−i(k·r+ωt)f(r, t). We can apply our scaling esti-

mates to these equations, with k ∼ 1/R(t), ω ∼ 1/t. We also
note that v(k, ω) ∼ (R(t)2t) v(r, t) ∼ R(t)3. If the dominant
contribution to the Oseen tensor is from the two-dimensional
membrane density ρm, we find that R(t) ∼ t2/3, which is
just the usual two-dimensional inertial scaling1,8. However,
if the dominant contribution is from the three-dimensional
mass density ρf , we find R(t) ∼ t1/2. We expect this to
be the dominant asymptotic scaling if inertia is relevant;
we note that at long times, momentum transport through
the outside fluid dominates the velocity autocorrelation
function15. Inertial simulations using Eq. 6 as a basis may
also be possible. However, if the velocity of the outside
fluid is a true dynamical variable, eliminating it from our
description will cause the dynamics to be non-Markovian14,
and full three-dimensional hydrodynamic simulations may be
more appropriate.

V. CONCLUSIONS

We have applied simple scaling theories to predict the be-
havior of phase-separating multicomponent membranes, and
compared these results to continuum hydrodynamic simula-
tions. Theory and simulation show that both the morphol-
ogy and the scaling exponent will depend on the relative
importance of diffusion, hydrodynamics, and thermal fluc-
tuations. We present different scaling regimes where each
of these effects dominate. One feature unique to the mem-
brane system is the appearance of an additional hydrodynamic
length scale, the Saffman-Delbrück length Lsd; domains will
coarsen with different morphology and exponents depending
on whether they are smaller or larger than Lsd (the “2D” and
“3D” limits, respectively). Scaling theories correctly describe
the dynamical scaling exponents in the regions of parameter
space where the phase separation mechanism is bulk diffu-
sion, evaporation-condensation, and thermal coalescence, but
fail to predict the observed scaling violation in the critical
(〈φ〉 = 0) viscous limits. In addition to the violation of scaling
for bicontinuous phase separation both in the 2D and 3D lim-
its we observe a region of apparent scaling in the 3D regime,
with scaling exponent 1/2; this scaling is connected to the

presence of thermal fluctuations, and can be suppressed by in-
creasing the line tension. We apply our scaling results to an-
alyze experiments and other simulations that attempt to mea-
sure the scaling exponent, and suggest that the measurement
of the membrane viscosity is a necessary prerequisite for un-
derstanding these results. We also apply our scaling theory
to predict how the scaling exponent will change if the exper-
imental conditions are modified, such as treating a supported
membrane.
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Appendix A: Fluctuation-dissipation and the noninertial
limit

Our model describes composition dynamics via a nonlin-
ear Langevin equation, Eq. 1. We chose this model by anal-
ogy with the noninertial limit of Model H dynamics for a
binary fluid53. This limit has been applied to analytic stud-
ies of phase separation1,54, and has been numerically eval-
uated at kBT = 046, but a subtle issue appears in the nu-
merical evolution of our Langevin equation at finite tempera-
ture. Equation 1 has a multiplicative noise term, which admits
multiple interpretations55. We show in this section that the
Stratonovich interpretation of our equations of motion is nec-
essary in order to obey fluctuation-dissipation, and have the
Boltzmann distribution as the steady state distribution.

1. Preliminaries

Our equations of motion for both the lipid composition
φ(r, t) consist of nonlinear Langevin equations with multi-
plicative noise. This sort of equation can be written in the
form

∂zi(t)
∂t

= Ai(z) +Bij(z)Rj(t) (A1)

where we have assumed the Einstein summation convention;
we will assume this convention throughout for Latin indices,
but will explicitly note sums over momenta (q,p, etc.). Here,
Rj(t) is a Gaussian Langevin noise with zero mean and vari-
ance

〈Ri(t)Rj(t′)〉 = δijδ(t− t′) (A2)

However, if Bij depends on z, Eq. A1 is susceptible to dif-
ferent interpretations and needs to be supplemented with ad-
ditional information55. There are two distinct interpretations:
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Ito and Stratonovich, which are most easily distinguished by
the Fokker-Planck equation corresponding to Eq. A1. In the
Ito convention, the Fokker-Planck equation for Eq. A1 is

∂P

∂t
=− ∂

∂zi
[AiP ]

+
1
2
∂

∂zi

∂

∂zj
[Bik(z)Bjk(z)P ] (Ito) (A3)

where P is the conditional probability density P =
P (z, t|z0, t0). By contrast, in the Stratonovich interpretation,
Eq. A1 is equivalent to

∂P

∂t
=− ∂

∂zi
[AiP ]

+
1
2
∂

∂zi

{
Bik(z)

∂

∂zj
[Bjk(z)P ]

}
(Strat.) (A4)

From this, we can see that the Stratonovich interpretation of
Eq. A1 is equivalent to an Ito equation with a modified drift
term,

AIto
i = AStrat

i +
1
2
Bjk

∂

∂zj
Bik. (A5)

One particularly useful special case of the general Langevin
equation Eq. A1 is one where the drift term is derived from an
energy H ,

∂zi(t)
∂t

= −Mij(z)
∂H

∂zj
+Bij(z)Rj(t) (A6)

The well-known “Brownian dynamics with hydrodynamic
interactions” algorithm56 takes on a version of this form, and
we will see that our membrane composition simulation does as
well. If we choose the Stratonovich interpretation, the Fokker-
Planck equation corresponding to Eq. A6 is

∂P

∂t
=
∂

∂zi

[(
Mij(z)

∂H

∂zj
− 1

2
Bjk

∂

∂zj
Bik

)
P

]
+

1
2
∂

∂zi

∂

∂zj
[Bik(z)Bjk(z)P ] (Strat). (A7)

If the fluctuation-dissipation relationship BikBjk =
2kBTMij holds, and Bjk ∂

∂zj
Bik = kBT

∂Mij

∂zj
it is simple

to see that the equilibrium distribution P ∼ exp(−H/kBT )
will be a steady state of Eq. A7.

If we choose the Ito interpretation, the Fokker-Planck equa-
tion corresponding to Eq. A6 is

∂P

∂t
=

∂

∂zi

[(
Mij(z)

∂H

∂zj

)
P

]
+

1
2
∂

∂zi

∂

∂zj
[Bik(z)Bjk(z)P ] (Ito). (A8)

In the Ito case, the Boltzmann distribution will be the
steady state of Eq. A8 if the fluctuation-dissipation relation-
ship BikBjk = 2kBTMij holds, and kBT

∂Mij

∂zj
= 0.

2. Membrane composition dynamics

Our overdamped model H for simulations of phase separa-
tion in a model membrane is given by

(∂t + v · ∇)φ(r, t) = M∇2 δH

δφ(r, t)
+ θ(r, t) (A9)

vi(r, t) =
∫
d2r′ Tmij (r− r′)

[
δH

δφ(r′, t)
∇′jφ(r′, t) + ζj(r′, t)

]
.

(A10)

where the continuum Fourier transform of Tmij is11,24

Tmij (q) =
∫
d2r Tmij (r)e−iq·r

=
1

ηm(q2 + q/Lsd)

(
δij −

qiqj
q2

)
(A11)

where the integral is over all space. We note that qiTmij (q) =
0 as a result of the incompressibility constraint∇·vm = 0 on
the membrane. We will use T ijk as a shorthand for Tmij (k).

In Fourier space, these equations are

∂tφq(t) + {v · ∇φ(r, t)}q = −Mq2
{

δH

δφ(r, t)

}
q

+ θq

(A12)

vq,i(t) = Tmij (q)
{

δH

δφ(r, t)
∇jφ(r, t) + ζj

}
q

(A13)

where {f(r)}q is the Fourier component of f(r). The Fourier
conventions we use are φq =

∫
L d

2r φ(r)e−iq·r, and φ(r) =
L−2

∑
q φqe

iq·r. The variances of the Langevin forces are

〈θq(t)θq′(t′)〉 = 2kBTMq2L2δq,−q′δ(t− t′) (A14)

〈ζq,i(t)ζq′,j(t′)〉 = 2kBTL2ηm(q2 + q/Lsd)δijδq,−q′δ(t− t′).
(A15)

We want to show that the Langevin equations Eqs. A12-
A15 drive the system to the Boltzmann distribution, ∼
e−H/kBT . The difficult term in this calculation is the velocity
term, which has multiplicative noise. For simplicity, we take
M = 0, ignoring the bulk diffusion term for now. Then our
Langevin equations become, writing out the Fourier transform
of v · ∇φ explicitly as a convolution,

∂tφq(t) = − 1
L2

∑
k

vik
√
−1(q − k)iφq−k (A16)

where vik = T ijk f
comp
j (k), f comp

j (k) ={
δH

δφ(r,t)∇jφ(r, t) + ζj

}
k

. We note that in our conven-

tion,
{

δH
δφ(r)

}
k

= L2 ∂H
∂φ−k

. This force can be written
explicitly in Fourier space by using the convolution theorem:

f comp
j (k) =

∑
p

[
∂H

∂φ−p

√
−1(k − p)jφk−p

]
+ rkRj(k)

(A17)
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where rk =
[
2kBTL2ηm(k2 + k/Lsd)

]1/2
and Rj(k) is a

Langevin force with 〈Ri(k, t)Rj(k′, t′)〉 = δijδk,−k′δ(t−t′).
Our Langevin equation Eq. A16 is now in the form

∂tφq = −
∑
p

M(q,p)
∂H

∂φp
+
∑
p

B(q,p)R(p) (A18)

where

M(q,p) = − 1
L2

∑
k

(q − k)iφq−kT
ij
k (k + p)jφk+p

(A19)

B(q,p) = − 1
L2

√
−1(q − p)iφq−pT

ij
p rp (A20)

We have suppressed a vector index on B(q, {p, j}) and
Rj(p) for simplicity; the sum over j is implied. The Langevin
equation Eq. A18 is in the form of Eq. A6, though we have
written out the sum over p explicitly.

The Fokker-Planck equation corresponding to our Langevin
equation, Eq. A18, is (in the Stratonovich interpretation)

∂P

∂t
=
∑
q,p

∂

∂φq

M(q,p)
∂H

∂φp
− 1

2

∑
k,p

B(p,−k)
∂

∂φp
B(q,k)

P

+

1
2

∑
q,p

∂

∂φq

∂

∂φp

(∑
k

B(q,k)B(p,−k)P

)

The slight difference between this result and that of Eq. A4
is a result of the minor change in convention in the cor-
relation of Ri(k)57. We now show that the Stratonovich
interpretation of this equation has the Boltzmann distri-
bution as a steady state; this requires us to demonstrate
that

∑
kB(q,k)B(p,−k) = 2kBTM(q,p) and that

kBT
∑

p
∂
∂φp

M(q,p) = 1
2

∑
k,pB(p,−k) ∂

∂φp
B(q,k).

We can evaluate
∑

kB(q,k)B(p,−k):∑
k

B(q,k)B(p,−k) =

− 1
L4

∑
k

(q − k)iφq−k(p+ k)`φp+kT
ij
k T

j`
k r2k (A21)

where we have used T ijk = T jik , T ij−k = T ijk . We note that
T ijk is just proportional to the transverse projector ℘ij⊥(k) =
(δij − kikj/k2), and that ℘2

⊥ = ℘⊥, so we find T ijk T
j`
k r2k =

2kBTL2T i`k . Therefore,∑
k

B(q,k)B(p,−k)

= −2kBT
L2

∑
k

(q − k)iφq−k(p+ k)`φp+kT
i`
k

= 2kBTM(q,p) (A22)

To check the second requirement, we note that
as

∑
kB(q,k)B(p,−k) = 2kBTM(q,p), then

kBT
∂
∂φp

M(q,p) = 1
2

∑
k,pB(p,−k) ∂

∂φp
B(q,k) only if∑

k,pB(q,k) ∂
∂φp

B(p,−k) = 0. We can calculate this term
simply:

∑
k,p

B(q,k)
∂

∂φp
B(p,−k)

= −2kBT
L2

∑
k,p

(q − k)iφq−k(p+ k)`
∂φp+k

∂φp
T i`k

= −2kBT
L2

qiφqT
i`
0

∑
p

p` (A23)

which is obviously seen to be zero by taking p → −p. The
k = 0 zero mode of the Oseen tensor is, in principle, infinite,
but in fact is limited by the finite extent of the system, as in58;
in our simulations we only sum over k 6= 0, as in59.

This derivation shows that the Stratonovich interpretation
of our dynamical equations will lead to the correct Boltz-
mann distribution as the steady state. We can also immedi-
ately see that the Ito interpretation is not correct. If Eq. A18
were interpreted in the Ito sense, we would require that∑

p
∂
∂φp

M(q,p) = 0 in order to have the correct steady state,
and this is not the case.

1A. J. Bray, Adv. Phys. 43, 357 (1994).
2J. S. Langer, Solids Far From Equilibrium (Cambridge University Press,
1992), p. 297.

3K. Binder, S. Puri, S. K. Das, and J. Horbach, J. Stat. Phys. 138, 51 (2010).
4N. Goldenfeld, Lectures on Phase Transitions and the Renormalization
Group (Frontiers in Physics, 1992).

5P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics
(Cambridge University Press, 2000).

6E. D. Siggia, Phys. Rev. A 20, 595 (1979).
7A. J. Wagner and J. Yeomans, Phys. Rev. Lett. 80, 1429 (1998).
8H. Furukawa, Phy. Rev. E 61, 1423 (2000).
9A. J. Wagner and M. E. Cates, Europhys. Lett. 56, 556 (2001).



12

10P. G. Saffman and M. Delbrück, Proc. Nat. Acad. Sci. USA 72, 3111 (1975).
11N. Oppenheimer and H. Diamant, Biophys. J. 96, 3041 (2009).
12J. Happel and H. Brenner, Low Reynolds number hydrodynamics (Kluwer,

The Hague, 1983).
13J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic

Press, The Netherlands, 2006), 3rd ed.
14R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford, New York,

2001).
15B. A. Camley and F. L. H. Brown, Phys. Rev. E. 84, 021904 (2011).
16S. Ramadurai et al., J. Am. Chem. Soc. 131, 12650 (2009).
17P. Cicuta, S. L. Keller, and S. L. Veatch, J. Phys. Chem. B 111, 3328 (2007).
18B. D. Hughes, B. A. Pailthorpe, and L. R. White, J. Fluid Mech. 110, 349

(1981).
19H. A. Stone and H. M. McConnell, Proc. Royal Society of London A 448,

97 (1995).
20B. A. Camley, C. Esposito, T. Baumgart, and F. L. H. Brown, Biophys. J.

99, L44 (2010).
21M. Haataja, Phys. Rev. E. 80, 020902R (2009).
22K. Inaura and Y. Fujitani, J. Phys. Soc. Japan 77, 114603 (2008).
23A. R. Honerkamp-Smith, B. Machta, and S. Keller (2011),

arXiv:1104.2613v1.
24D. K. Lubensky and R. E. Goldstein, Phys. Fluids 8, 843 (1996).
25V. Prasad, S. Koehler, and E. Weeks, Phys. Rev. Lett. 97, 176001 (2006).
26Z. H. Nguyen et al., Phys. Rev. Lett. 105, 268304 (2010).
27M. Edidin, Ann. Rev. Biophys. Biomol. Struct. 32, 257 (2003).
28K. Simons and W. L. Vaz, Ann. Rev. Biophys. Biomol. Struct. 33, 259

(2004).
29S. L. Veatch and S. L. Keller, Biophys. J. 85, 3074 (2003).
30S. L. Veatch and S. L. Keller, Biochim. Biophys. Acta. 1746, 172 (2005).
31M. Yanagisawa et al., Biophys. J. 92, 115 (2007).
32D. Saeki, T. Hamada, and K. Yoshikawa, J. Phys. Soc. Japan 75, 013602

(2006).
33M.H. Jensen et al., Langmuir 23, 8135 (2007).

34M. Laradji and P. S. Kumar, J. Chem. Phys 123, 224902 (2005).
35S. Ramachandran, S. Komura, and G. Gompper, Eur. Phys. Lett. 19, 56001

(2010).
36B. A. Camley and F. L. H. Brown, Phys. Rev. Lett. 105, 148102 (2010).
37J. Fan, T. Han, and M. Haataja, J. Chem. Phys. 133, 235101 (2010).
38V. M. Kendon et al., J. Fluid Mech. 440, 147 (2001).
39G. Gonnella, E. Orlandini, and J. M. Yeomans, Phys. Rev. E. 59, R4741

(1999).
40R. DeKoker, Ph.D. thesis, Stanford University (1996).
41K. Seki, S. Ramachandran, and S. Komura, Phys. Rev. E. 84, 021905

(2011).
42S. Ramachandran, S. Komura, and G. Gompper, Europhys. Lett. 89, 56001

(2010).
43N. Vladimirova, A. Malagoli, and R. Mauri, Phys. Rev. E. 60, 6968 (1999).
44H. Tanaka and T. Araki, Phys. Rev. Lett. 81, 389 (1998).
45D. Jacqmin, J. Comp. Physics 155, 96 (1999).
46T. Koga and K. Kawasaki, Phys. Rev. A 44, R817 (1991).
47S. Keller and C. Stanich, personal communication (2011).
48C. Esposito et al, Biophys. J. 93, 3169 (2007).
49R. Dimova et al., Eur. Phys. J. B 12, 589 (1999).
50E. P. Petrov and P. Schwille, Biophys. J. 94, L41 (2009).
51N. Oppenheimer and H. Diamant, Phys. Rev. E. 82, 041912 (2010).
52H. Stone and A. Ajdari, J. Fluid. Mech. 369, 151 (1998).
53P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
54K. Kawasaki and T. Ohta, Physica A 118, 175 (1983).
55N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North

Holland, 2007).
56D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 (1978).
57In order to convert between results with the δk,−k′ correlation and the
δij correlation, it is often convenient to define Rk =

P
pGkpQp with

〈Qp(t)Qp(t′)〉 = δp,p′δ(t− t′) and thus
P

pGkpGk′p = δk,−k′ .
58L. Lin and F. L. Brown, Phys. Rev. E 72, 011910 (2005).
59A. J. Ladd, J. Chem. Phys. 88, 5051 (1987).


